Suppr超能文献

使用累积曲线拟合近似法从功能近红外光谱信号中增强联合心率和呼吸率提取

Enhanced Joint Heart and Respiratory Rates Extraction from Functional Near-infrared Spectroscopy Signals Using Cumulative Curve Fitting Approximation.

作者信息

Adib Navid, Setarehdan Seyed Kamaledin, Tondashti Shirin Ashtari, Yaghoubi Mahdis

机构信息

Department of Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.

出版信息

J Med Signals Sens. 2025 May 1;15:15. doi: 10.4103/jmss.jmss_48_24. eCollection 2025.

Abstract

BACKGROUND

Functional near-infrared spectroscopy (fNIRS) is a valuable neuroimaging tool that captures cerebral hemodynamic during various brain tasks. However, fNIRS data usually suffer physiological artifacts. As a matter of fact, these physiological artifacts are rich in valuable physiological information.

METHODS

Leveraging this, our study presents a novel algorithm for extracting heart and respiratory rates (RRs) from fNIRS signals using a nonstationary, nonlinear filtering approach called cumulative curve fitting approximation. To enhance the accuracy of heart peak localization, a novel real-time method based on polynomial fitting was implemented, addressing the limitations of the 10 Hz temporal resolution in fNIRS. Simultaneous recordings of fNIRS, electrocardiogram (ECG), and respiration using a chest band strain gauge sensor were obtained from 15 subjects during a respiration task. Two-thirds of the subjects' data were used for the training procedure, employing a 5-fold cross-validation approach, while the remaining subjects were completely unseen and reserved for final testing.

RESULTS

The results demonstrated a strong correlation ( > 0.92, Bland-Altman Ratio <6%) between heart rate variability derived from fNIRS and ECG signals. Moreover, the low mean absolute error (0.18 s) in estimating the respiration period emphasizes the feasibility of the proposed method for RR estimation from fNIRS data. In addition, paired -tests showed no significant difference between respiration rates estimated from the fNIRS-based measurements and those from the respiration sensor for each subject ( > 0.05).

CONCLUSION

This study highlights fNIRS as a powerful tool for noninvasive extraction of heart and RRs alongside brain signals. The findings pave the way for developing lightweight, cost-effective wearable devices that can simultaneously monitor hemodynamic, heart, and respiratory activity, enhancing comfort and portability for health monitoring applications.

摘要

背景

功能近红外光谱技术(fNIRS)是一种有价值的神经成像工具,可在各种脑部任务期间捕捉脑血流动力学。然而,fNIRS数据通常会受到生理伪影的影响。事实上,这些生理伪影富含宝贵的生理信息。

方法

利用这一点,我们的研究提出了一种新颖的算法,使用一种称为累积曲线拟合近似的非平稳、非线性滤波方法从fNIRS信号中提取心率和呼吸频率(RRs)。为提高心率峰值定位的准确性,实施了一种基于多项式拟合的新颖实时方法,解决了fNIRS中10Hz时间分辨率的局限性。在呼吸任务期间,从15名受试者获取了fNIRS、心电图(ECG)以及使用胸带应变片传感器进行的呼吸同步记录。三分之二受试者的数据用于训练过程,采用5折交叉验证方法,而其余受试者的数据完全不参与训练并留作最终测试。

结果

结果表明,从fNIRS得出的心率变异性与ECG信号之间存在强相关性(>0.92,布兰德 - 奥特曼比率<6%)。此外,估计呼吸周期时的低平均绝对误差(0.18秒)强调了所提出的从fNIRS数据估计RRs方法的可行性。此外,配对检验表明,对于每个受试者,基于fNIRS测量得出的呼吸频率与呼吸传感器得出的呼吸频率之间无显著差异(>0.05)。

结论

本研究强调了fNIRS作为一种强大工具,可在提取脑信号的同时无创提取心率和RRs。这些发现为开发轻便、经济高效的可穿戴设备铺平了道路,该设备可同时监测血流动力学、心脏和呼吸活动,提高健康监测应用的舒适度和便携性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2192/12105807/c4d5d7a9f33a/JMSS-15-15-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验