Suppr超能文献

用于功能近红外光谱(fNIRS)数据实时分类的混杂生理信号的多变量卡尔曼滤波回归

Multivariate Kalman filter regression of confounding physiological signals for real-time classification of fNIRS data.

作者信息

Ortega-Martinez Antonio, Von Lühmann Alexander, Farzam Parya, Rogers De'Ja, Mugler Emily M, Boas David A, Yücel Meryem A

机构信息

Boston University Neurophotonics Center, Boston, Massachusetts, United States.

Berlin Institute of Technology, Machine Learning Department, Berlin, Germany.

出版信息

Neurophotonics. 2022 Apr;9(2):025003. doi: 10.1117/1.NPh.9.2.025003. Epub 2022 Jun 8.

Abstract

: Functional near-infrared spectroscopy (fNIRS) is a noninvasive technique for measuring hemodynamic changes in the human cortex related to neural function. Due to its potential for miniaturization and relatively low cost, fNIRS has been proposed for applications, such as brain-computer interfaces (BCIs). The relatively large magnitude of the signals produced by the extracerebral physiology compared with the ones produced by evoked neural activity makes real-time fNIRS signal interpretation challenging. Regression techniques incorporating physiologically relevant auxiliary signals such as short separation channels are typically used to separate the cerebral hemodynamic response from the confounding components in the signal. However, the coupling of the extra-cerebral signals is often noninstantaneous, and it is necessary to find the proper delay to optimize nuisance removal. : We propose an implementation of the Kalman filter with time-embedded canonical correlation analysis for the real-time regression of fNIRS signals with multivariate nuisance regressors that take multiple delays into consideration. : We tested our proposed method on a previously acquired finger tapping dataset with the purpose of classifying the neural responses as left or right. : We demonstrate computationally efficient real-time processing of 24-channel fNIRS data (400 samples per second per channel) with a two order of selective magnitude decrease in cardiac signal power and up to sixfold increase in the contrast-to-noise ratio compared with the nonregressed signals. : The method provides a way to obtain better distinction of brain from non-brain signals in real time for BCI application with fNIRS.

摘要

功能近红外光谱技术(fNIRS)是一种用于测量与神经功能相关的人类皮质血流动力学变化的非侵入性技术。由于其小型化潜力和相对较低的成本,fNIRS已被提议用于脑机接口(BCI)等应用。与诱发神经活动产生的信号相比,脑外生理产生的信号幅度相对较大,这使得fNIRS信号的实时解释具有挑战性。通常使用包含生理相关辅助信号(如短间隔通道)的回归技术来将脑血流动力学反应与信号中的混杂成分分离。然而,脑外信号的耦合往往不是即时的,因此有必要找到适当的延迟以优化干扰去除。我们提出了一种结合时间嵌入典型相关分析的卡尔曼滤波器实现方法,用于对具有多延迟的多变量干扰回归器的fNIRS信号进行实时回归。我们在先前获取的手指点击数据集上测试了我们提出的方法,目的是将神经反应分类为左或右。我们展示了对24通道fNIRS数据(每通道每秒400个样本)的高效实时处理,与未回归信号相比,心脏信号功率选择性降低了两个数量级,对比度噪声比提高了多达六倍。该方法为使用fNIRS的BCI应用实时更好地区分脑信号和非脑信号提供了一种途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a985/9174890/ad6a381c549f/NPh-009-025003-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验