Suppr超能文献

使用微流控设备激活和扩增人T细胞

Activation and Expansion of Human T-Cells Using Microfluidic Devices.

作者信息

Peñaherrera-Pazmiño Ana Belén, Rosero Gustavo, Ruarte Dario, Pinter Julia, Vizuete Karla, Perez Maximiliano, Follo Marie, Lerner Betiana, Mertelsmann Roland

机构信息

Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.

Ingeniería de Recubrimientos Especiales y Nanoestructuras (IREN) Center, National Technological University, Buenos Aires 1706, Argentina.

出版信息

Biosensors (Basel). 2025 Apr 25;15(5):270. doi: 10.3390/bios15050270.

Abstract

Treatment of cancer patients with autologous T-cells expressing a chimeric antigen receptor (CAR) is one of the most promising therapeutic modalities for hematological malignancy treatment. For this treatment, primary T-cell expansion is needed. Microfluidic technologies can be used to better understand T-cell activation and proliferation. Microfluidics have had a meaningful impact in the way experimental biology and biomedical research are approached in general. Furthermore, microfluidic technology allows the generation of large amounts of data and enables the use of image processing for analysis. However, one of the major technical hurdles involved in growing suspension cells under microfluidic conditions is their immobilization, to avoid washing them out of the microfluidic chip during medium renewal. In this work, we use a multilevel microfluidic chip to successfully capture and immobilize suspension cells. Jurkat cells and T-cells are isolated through traps to microscopically track their development and proliferation after activation over a period of 8 days. The T-cell area of four independent microchannels was compared and there is no statistically significant difference between them (ANOVA -value = 0.976). These multilevel microfluidic chips provide a new method of studying T-cell activation.

摘要

用表达嵌合抗原受体(CAR)的自体T细胞治疗癌症患者是血液系统恶性肿瘤治疗中最有前景的治疗方式之一。对于这种治疗,需要进行原代T细胞扩增。微流控技术可用于更好地理解T细胞的激活和增殖。微流控技术对整个实验生物学和生物医学研究的开展方式产生了重大影响。此外,微流控技术能够生成大量数据,并可利用图像处理进行分析。然而,在微流控条件下培养悬浮细胞所涉及的一个主要技术障碍是细胞的固定,以避免在更换培养基时将它们冲出微流控芯片。在这项工作中,我们使用了一种多级微流控芯片成功捕获并固定了悬浮细胞。通过阱分离出Jurkat细胞和T细胞,以在显微镜下跟踪它们在激活后8天内的发育和增殖情况。比较了四个独立微通道的T细胞面积,它们之间没有统计学上的显著差异(方差分析p值 = 0.976)。这些多级微流控芯片为研究T细胞激活提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fc/12110087/468673584afe/biosensors-15-00270-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验