Suppr超能文献

综合自适应企业优化算法及其工程应用

Comprehensive Adaptive Enterprise Optimization Algorithm and Its Engineering Applications.

作者信息

Wang Shuxin, Zheng Yejun, Cao Li, Xiong Mengji

机构信息

School of Intelligent Manufacturing, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China.

Engineering Technology Department, Shanghai Caoyang Vocational School, Wenzhou 200065, China.

出版信息

Biomimetics (Basel). 2025 May 9;10(5):302. doi: 10.3390/biomimetics10050302.

Abstract

In this study, a brand-new algorithm called the Comprehensive Adaptive Enterprise Development Optimizer (CAED) is proposed to overcome the drawbacks of the Enterprise Development (ED) algorithm in complex optimization tasks. In particular, it aims to tackle the problems of slow convergence and low precision. To enhance the algorithm's ability to break free from local optima, a lens imaging reverse learning approach is incorporated. This approach creates reverse solutions by utilizing the concepts of optical imaging. As a result, it expands the search range and boosts the probability of finding superior solutions beyond local optima. Moreover, an environmental sensitivity-driven adaptive inertial weight approach is developed. This approach dynamically modifies the equilibrium between global exploration, which enables the algorithm to search for new promising areas in the solution space, and local development, which is centered on refining the solutions close to the currently best-found areas. To evaluate the efficacy of the CAED, 23 benchmark functions from CEC2005 are chosen for testing. The performance of the CAED is contrasted with that of nine other algorithms, such as the Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), and the Antlion Optimizer (AOA). Experimental findings show that for unimodal functions, the standard deviation of the CAED is almost 0, which reflects its high accuracy and stability. In the case of multimodal functions, the optimal value obtained by the CAED is notably better than those of other algorithms, further emphasizing its outstanding performance. The CAED algorithm is also applied to engineering optimization challenges, like the design of cantilever beams and three-bar trusses. For the cantilever beam problem, the optimal solution achieved by the CAED is 13.3925, with a standard deviation of merely 0.0098. For the three-bar truss problem, the optimal solution is 259.805047, and the standard deviation is an extremely small 1.11 × 10. These results are much better than those achieved by the traditional ED algorithm and the other comparative algorithms. Overall, through the coordinated implementation of multiple optimization strategies, the CAED algorithm exhibits high precision, strong robustness, and rapid convergence when searching in complex solution spaces. As such, it offers an efficient approach for solving various engineering optimization problems.

摘要

在本研究中,提出了一种全新的算法,称为综合自适应企业发展优化器(CAED),以克服企业发展(ED)算法在复杂优化任务中的缺点。特别是,它旨在解决收敛速度慢和精度低的问题。为了提高算法摆脱局部最优的能力,引入了一种透镜成像反向学习方法。这种方法利用光学成像的概念创建反向解。结果,它扩大了搜索范围,提高了找到超越局部最优的更好解的概率。此外,还开发了一种环境敏感性驱动的自适应惯性权重方法。这种方法动态地调整全局探索(使算法能够在解空间中搜索新的有希望的区域)和局部开发(以优化接近当前最佳发现区域的解为中心)之间的平衡。为了评估CAED的有效性,选择了CEC2005中的23个基准函数进行测试。将CAED的性能与其他九种算法进行了对比,如粒子群优化(PSO)、灰狼优化(GWO)和蚁狮优化器(AOA)。实验结果表明,对于单峰函数,CAED的标准差几乎为0,这反映了其高精度和稳定性。在多峰函数的情况下,CAED获得的最优值明显优于其他算法,进一步强调了其出色的性能。CAED算法还应用于工程优化挑战,如悬臂梁和三杆桁架的设计。对于悬臂梁问题,CAED获得的最优解为13.3925,标准差仅为0.0098。对于三杆桁架问题,最优解为259.805047,标准差极小,为1.11×10。这些结果比传统的ED算法和其他对比算法取得的结果要好得多。总体而言,通过多种优化策略的协同实施,CAED算法在复杂解空间中搜索时表现出高精度、强鲁棒性和快速收敛性。因此,它为解决各种工程优化问题提供了一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f7c/12109219/476e2ad2f533/biomimetics-10-00302-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验