Suppr超能文献

负载香芹酚纳米颗粒的3D打印二氧化硅-磷酸三钙支架在骨组织工程中的应用

3D Printed SiO-Tricalcium Phosphate Scaffolds Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering Application.

作者信息

Dahiya Aditi, Chaudhari Vishal Sharad, Kushram Priya, Bose Susmita

机构信息

Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.

出版信息

J Med Chem. 2024 Feb 22;67(4):2745-2757. doi: 10.1021/acs.jmedchem.3c01884. Epub 2023 Dec 26.

Abstract

Bone damage resulting from trauma or aging poses challenges in clinical settings that need to be addressed using bone tissue engineering (BTE). Carvacrol (CA) possesses anti-inflammatory, anticancer, and antibacterial properties. Limited solubility and physicochemical stability restrict its biological activity, requiring a stable carrier system for delivery. Here, we investigate the utilization of a three-dimensional printed (3DP) SiO-doped tricalcium phosphate (TCP) scaffold functionalized with carvacrol-loaded lipid nanoparticles (CA-LNPs) to improve bone health. It exhibits a negative surface charge with an entrapment efficiency of ∼97% and size ∼129 nm with polydispersity index (PDI) and zeta potential values of 0.18 and -16 mV, respectively. CA-LNPs exhibit higher and long-term release over 35 days. The CA-LNP loaded SiO-doped TCP scaffold demonstrates improved antibacterial properties against and by >90% reduction in bacterial growth. Functionalized scaffolds result in 3-fold decrease and 2-fold increase in osteosarcoma and osteoblast cell viability, respectively. These findings highlight the therapeutic potential of the CA-LNP loaded SiO-doped TCP scaffold for bone defect treatment.

摘要

由创伤或衰老导致的骨损伤在临床环境中构成了挑战,需要通过骨组织工程(BTE)来解决。香芹酚(CA)具有抗炎、抗癌和抗菌特性。有限的溶解度和物理化学稳定性限制了其生物活性,需要一个稳定的载体系统来递送。在此,我们研究利用三维打印(3DP)的掺杂二氧化硅的磷酸三钙(TCP)支架,该支架用负载香芹酚的脂质纳米颗粒(CA-LNPs)进行功能化,以改善骨骼健康。它呈现负表面电荷,包封率约为97%,尺寸约为129 nm,多分散指数(PDI)和zeta电位值分别为0.18和 -16 mV。CA-LNPs在35天内表现出更高的长期释放。负载CA-LNPs的掺杂二氧化硅的TCP支架对[具体细菌名称1]和[具体细菌名称2]表现出改善的抗菌性能,细菌生长减少>90%。功能化支架分别使骨肉瘤和成骨细胞活力降低3倍和增加2倍。这些发现突出了负载CA-LNPs的掺杂二氧化硅的TCP支架在骨缺损治疗中的治疗潜力。

相似文献

1
3D Printed SiO-Tricalcium Phosphate Scaffolds Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering Application.
J Med Chem. 2024 Feb 22;67(4):2745-2757. doi: 10.1021/acs.jmedchem.3c01884. Epub 2023 Dec 26.
3
Bone Healing via Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffolds.
Small. 2024 Dec;20(50):e2405642. doi: 10.1002/smll.202405642. Epub 2024 Oct 27.
4
Gingerol encapsulated lipid nanoparticles on 3D-printed scaffolds for orthopedic and dental applications.
Biomater Adv. 2025 Jul;172:214194. doi: 10.1016/j.bioadv.2025.214194. Epub 2025 Jan 18.
6
Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties.
Colloids Surf B Biointerfaces. 2023 Nov;231:113563. doi: 10.1016/j.colsurfb.2023.113563. Epub 2023 Sep 20.
7
Extrusion 3D-printed tricalcium phosphate-polycaprolactone biocomposites for quercetin-KCl delivery in bone tissue engineering.
J Biomed Mater Res A. 2024 Sep;112(9):1472-1483. doi: 10.1002/jbm.a.37692. Epub 2024 Mar 13.
10
and properties evaluation of curcumin loaded MgO doped 3D printed TCP scaffolds.
J Mater Chem B. 2023 May 31;11(21):4725-4739. doi: 10.1039/d2tb02547g.

引用本文的文献

2
Bone Healing via Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffolds.
Small. 2024 Dec;20(50):e2405642. doi: 10.1002/smll.202405642. Epub 2024 Oct 27.
3
3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation.
J Biomed Mater Res A. 2024 Dec;112(12):2110-2123. doi: 10.1002/jbm.a.37756. Epub 2024 Jun 18.
4
Extrusion 3D-printed tricalcium phosphate-polycaprolactone biocomposites for quercetin-KCl delivery in bone tissue engineering.
J Biomed Mater Res A. 2024 Sep;112(9):1472-1483. doi: 10.1002/jbm.a.37692. Epub 2024 Mar 13.

本文引用的文献

1
3D printed hydroxyapatite - Zn functionalized starch composite bone grafts for orthopedic and dental applications.
Mater Des. 2022 Sep;221. doi: 10.1016/j.matdes.2022.110903. Epub 2022 Jun 27.
2
Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review.
Chem Biodivers. 2023 Feb;20(2):e202201098. doi: 10.1002/cbdv.202201098. Epub 2023 Jan 23.
4
Msx1 stem cells recruited by bioactive tissue engineering graft for bone regeneration.
Nat Commun. 2022 Sep 5;13(1):5211. doi: 10.1038/s41467-022-32868-y.
7
Controlled Drug Delivery Systems: Current Status and Future Directions.
Molecules. 2021 Sep 29;26(19):5905. doi: 10.3390/molecules26195905.
8
Carvacrol Suppresses Human Osteosarcoma Cells via the Wnt/β-Catenin Signaling Pathway.
Anticancer Agents Med Chem. 2022;22(9):1714-1722. doi: 10.2174/1871520621666210901111932.
9
Paeonol Attenuates Quorum-Sensing Regulated Virulence and Biofilm Formation in .
Front Microbiol. 2021 Aug 4;12:692474. doi: 10.3389/fmicb.2021.692474. eCollection 2021.
10
Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications.
Addit Manuf. 2021 Mar;39. doi: 10.1016/j.addma.2021.101870. Epub 2021 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验