Maher Shaheer, Ignjatović Nenad L, Lazarević Miloš, Petrović Sanja, Žekić Andrijana, Losic Dusan
Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, PAK 104105, 11000 Belgrade, Serbia.
J Funct Biomater. 2025 Apr 28;16(5):157. doi: 10.3390/jfb16050157.
Titanium implants are widely used in biomedical applications due to their excellent mechanical properties and biocompatibility. However, implant-associated bacterial infections and suboptimal osseointegration remain significant challenges. Recent studies have demonstrated that the interplay between micro- and nanostructures can enhance both biocompatibility and antibacterial properties. This study explores the synergistic effects of hierarchical and dual surface topography on Ti surfaces with micro- and nanostructures to demonstrate their ability to promote cellular biocompatibility and osteoinduction while simultaneously inhibiting bacterial colonization. The combination of selective laser melting (SLM) to create micro-structured surfaces and hydrothermal processes is used to generate distinctive nanopillar structures. By integrating nanoscale features that mimic the extracellular matrix with microscale topographies that influence cellular responses, we achieve a balance between enhanced osseointegration and antimicrobial performance. The physicochemical properties of these dual-scale topographies are characterized through cellular assays using dental pulp stem cells (DPSCs), demonstrating sustained support for long-term cell viability (above 78% in MTT and NR assays ( < 0.05), low levels of LDH release, and high levels of cellular migration) and osteoinduction (statistically significant ( < 0.0001) ALP activity increase and higher levels of calcified matrix deposition, upregulation of and genes compared with smooth surface topographies). Their antibacterial properties against and showed a significant reduction ( < 0.05) in bacterial attachment and biofilm formation. Our findings highlight the potential of multi-scale surface modifications as a promising strategy for next-generation titanium implants, paving the way for improved clinical outcomes in orthopedic and dental applications.
钛植入物因其优异的机械性能和生物相容性而广泛应用于生物医学领域。然而,与植入物相关的细菌感染和不理想的骨整合仍然是重大挑战。最近的研究表明,微观和纳米结构之间的相互作用可以增强生物相容性和抗菌性能。本研究探讨了具有微观和纳米结构的钛表面上分级和双表面形貌的协同效应,以证明它们促进细胞生物相容性和骨诱导的能力,同时抑制细菌定植。采用选择性激光熔化(SLM)来创建微观结构表面,并结合水热工艺来生成独特的纳米柱结构。通过将模拟细胞外基质的纳米级特征与影响细胞反应的微观形貌相结合,我们在增强骨整合和抗菌性能之间实现了平衡。通过使用牙髓干细胞(DPSC)进行细胞试验来表征这些双尺度形貌的物理化学性质,结果表明其对长期细胞活力具有持续支持作用(MTT和NR试验中高于78%(<0.05),LDH释放水平低,细胞迁移水平高)以及骨诱导能力(碱性磷酸酶(ALP)活性显著增加(<0.0001),钙化基质沉积水平更高,与光滑表面形貌相比, 和 基因上调)。它们对 和 的抗菌性能表现为细菌附着和生物膜形成显著减少(<0.05)。我们的研究结果突出了多尺度表面修饰作为下一代钛植入物的一种有前景策略的潜力,为改善骨科和牙科应用的临床结果铺平了道路。