Mosquera-Zamudio Andrés, Cancino Sandra, Cárdenas-Montoya Guillermo, Garcia-Arteaga Juan D, Zambrano-Betancourt Carlos, Parra-Medina Rafael
Departamento de Patología, Instituto Nacional de Cancerología (INC), Bogotá 111511, Colombia.
Laboratorio de Patología, Clínica Colsanitas, Bogotá 111711, Colombia.
J Imaging. 2025 Apr 29;11(5):137. doi: 10.3390/jimaging11050137.
Whole-slide imaging (WSI) in cytopathology poses challenges related to segmentation accuracy, computational efficiency, and image acquisition artifacts. This study aims to evaluate the performance of deep-learning models for instance segmentation in cervical cytology, benchmarking them against state-of-the-art methods on both public and institutional datasets. We tested three architectures-U-Net, vision transformer (ViT), and Detectron2-and evaluated their performance on the ISBI 2014 and CNseg datasets using panoptic quality (PQ), dice similarity coefficient (DSC), and intersection over union (IoU). All models were trained on CNseg and tested on an independent institutional dataset. Data preprocessing involved manual annotation using QuPath, patch extraction guided by GeoJSON files, and exclusion of regions containing less than 60% cytologic material. Our models achieved superior segmentation performance on public datasets, reaching up to 98% PQ. Performance decreased on the institutional dataset, likely due to differences in image acquisition and the presence of blurred nuclei. Nevertheless, the models were able to detect blurred nuclei, highlighting their robustness in suboptimal imaging conditions. In conclusion, the proposed models offer an accurate and efficient solution for instance segmentation in cytology WSI. These results support the development of reliable AI-powered tools for digital cytology, with potential applications in automated screening and diagnostic workflows.
细胞病理学中的全切片成像(WSI)在分割准确性、计算效率和图像采集伪影方面存在挑战。本研究旨在评估深度学习模型在宫颈细胞学实例分割中的性能,并在公共和机构数据集上与最先进的方法进行基准测试。我们测试了三种架构——U-Net、视觉Transformer(ViT)和Detectron2,并使用全景质量(PQ)、骰子相似系数(DSC)和交并比(IoU)在ISBI 2014和CNseg数据集上评估它们的性能。所有模型均在CNseg上进行训练,并在独立的机构数据集上进行测试。数据预处理包括使用QuPath进行手动注释、由GeoJSON文件引导的补丁提取以及排除细胞学材料少于60%的区域。我们的模型在公共数据集上实现了卓越的分割性能,PQ高达98%。在机构数据集上性能有所下降,可能是由于图像采集的差异和模糊细胞核的存在。尽管如此,这些模型能够检测到模糊的细胞核,凸显了它们在次优成像条件下的鲁棒性。总之,所提出的模型为细胞学WSI中的实例分割提供了准确且高效的解决方案。这些结果支持开发用于数字细胞学的可靠人工智能工具,并在自动筛查和诊断工作流程中具有潜在应用。