Jha Aadarsh, Yang Haichun, Deng Ruining, Kapp Meghan E, Fogo Agnes B, Huo Yuankai
Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, United States.
Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, United States.
J Med Imaging (Bellingham). 2021 Jan;8(1):014001. doi: 10.1117/1.JMI.8.1.014001. Epub 2021 Jan 7.
Automatic instance segmentation of glomeruli within kidney whole slide imaging (WSI) is essential for clinical research in renal pathology. In computer vision, the end-to-end instance segmentation methods (e.g., Mask-RCNN) have shown their advantages relative to detect-then-segment approaches by performing complementary detection and segmentation tasks simultaneously. As a result, the end-to-end Mask-RCNN approach has been the standard method in recent glomerular segmentation studies, where downsampling and patch-based techniques are used to properly evaluate the high-resolution images from WSI (e.g., on ). However, in high-resolution WSI, a single glomerulus itself can be more than in original resolution which yields significant information loss when the corresponding features maps are downsampled to the resolution via the end-to-end Mask-RCNN pipeline. We assess if the end-to-end instance segmentation framework is optimal for high-resolution WSI objects by comparing Mask-RCNN with our proposed detect-then-segment framework. Beyond such a comparison, we also comprehensively evaluate the performance of our detect-then-segment pipeline through: (1) two of the most prevalent segmentation backbones (U-Net and DeepLab_v3); (2) six different image resolutions ( , , , , , and ); and (3) two different color spaces (RGB and LAB). Our detect-then-segment pipeline, with the DeepLab_v3 segmentation framework operating on previously detected glomeruli of resolution, achieved a 0.953 Dice similarity coefficient (DSC), compared with a 0.902 DSC from the end-to-end Mask-RCNN pipeline. Further, we found that neither RGB nor LAB color spaces yield better performance when compared against each other in the context of a detect-then-segment framework. The detect-then-segment pipeline achieved better segmentation performance compared with the end-to-end method. Our study provides an extensive quantitative reference for other researchers to select the optimized and most accurate segmentation approach for glomeruli, or other biological objects of similar character, on high-resolution WSI.
在肾脏全切片成像(WSI)中对肾小球进行自动实例分割对于肾脏病理学的临床研究至关重要。在计算机视觉中,端到端实例分割方法(如Mask-RCNN)通过同时执行互补的检测和分割任务,相对于先检测后分割的方法展现出了优势。因此,端到端的Mask-RCNN方法一直是近期肾小球分割研究中的标准方法,其中采用了下采样和基于补丁的技术来正确评估来自WSI的高分辨率图像(例如 )。然而,在高分辨率WSI中,单个肾小球本身在原始分辨率下可能超过 ,当通过端到端的Mask-RCNN管道将相应的特征图下采样到 分辨率时,会产生显著的信息损失。我们通过将Mask-RCNN与我们提出的先检测后分割框架进行比较,来评估端到端实例分割框架对于高分辨率WSI对象是否最优。除了这种比较之外,我们还通过以下方式全面评估我们的先检测后分割管道的性能:(1)两种最流行的分割主干(U-Net和DeepLab_v3);(2)六种不同的图像分辨率( 、 、 、 、 和 );以及(3)两种不同的颜色空间(RGB和LAB)。我们的先检测后分割管道,采用DeepLab_v3分割框架对先前检测到的 分辨率的肾小球进行操作,获得了0.953的骰子相似系数(DSC),而端到端的Mask-RCNN管道的DSC为0.902。此外,我们发现,在先检测后分割框架的背景下,RGB和LAB颜色空间相互比较时,都不会产生更好的性能。与端到端方法相比,先检测后分割管道实现了更好的分割性能。我们的研究为其他研究人员在高分辨率WSI上为肾小球或其他具有相似特征的生物对象选择优化且最准确的分割方法提供了广泛的定量参考。