Suppr超能文献

用于全切片成像的实例分割:端到端还是先检测后分割。

Instance segmentation for whole slide imaging: end-to-end or detect-then-segment.

作者信息

Jha Aadarsh, Yang Haichun, Deng Ruining, Kapp Meghan E, Fogo Agnes B, Huo Yuankai

机构信息

Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, United States.

Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, United States.

出版信息

J Med Imaging (Bellingham). 2021 Jan;8(1):014001. doi: 10.1117/1.JMI.8.1.014001. Epub 2021 Jan 7.

Abstract

Automatic instance segmentation of glomeruli within kidney whole slide imaging (WSI) is essential for clinical research in renal pathology. In computer vision, the end-to-end instance segmentation methods (e.g., Mask-RCNN) have shown their advantages relative to detect-then-segment approaches by performing complementary detection and segmentation tasks simultaneously. As a result, the end-to-end Mask-RCNN approach has been the standard method in recent glomerular segmentation studies, where downsampling and patch-based techniques are used to properly evaluate the high-resolution images from WSI (e.g., on ). However, in high-resolution WSI, a single glomerulus itself can be more than in original resolution which yields significant information loss when the corresponding features maps are downsampled to the resolution via the end-to-end Mask-RCNN pipeline. We assess if the end-to-end instance segmentation framework is optimal for high-resolution WSI objects by comparing Mask-RCNN with our proposed detect-then-segment framework. Beyond such a comparison, we also comprehensively evaluate the performance of our detect-then-segment pipeline through: (1) two of the most prevalent segmentation backbones (U-Net and DeepLab_v3); (2) six different image resolutions ( , , , , , and ); and (3) two different color spaces (RGB and LAB). Our detect-then-segment pipeline, with the DeepLab_v3 segmentation framework operating on previously detected glomeruli of resolution, achieved a 0.953 Dice similarity coefficient (DSC), compared with a 0.902 DSC from the end-to-end Mask-RCNN pipeline. Further, we found that neither RGB nor LAB color spaces yield better performance when compared against each other in the context of a detect-then-segment framework. The detect-then-segment pipeline achieved better segmentation performance compared with the end-to-end method. Our study provides an extensive quantitative reference for other researchers to select the optimized and most accurate segmentation approach for glomeruli, or other biological objects of similar character, on high-resolution WSI.

摘要

在肾脏全切片成像(WSI)中对肾小球进行自动实例分割对于肾脏病理学的临床研究至关重要。在计算机视觉中,端到端实例分割方法(如Mask-RCNN)通过同时执行互补的检测和分割任务,相对于先检测后分割的方法展现出了优势。因此,端到端的Mask-RCNN方法一直是近期肾小球分割研究中的标准方法,其中采用了下采样和基于补丁的技术来正确评估来自WSI的高分辨率图像(例如 )。然而,在高分辨率WSI中,单个肾小球本身在原始分辨率下可能超过 ,当通过端到端的Mask-RCNN管道将相应的特征图下采样到 分辨率时,会产生显著的信息损失。我们通过将Mask-RCNN与我们提出的先检测后分割框架进行比较,来评估端到端实例分割框架对于高分辨率WSI对象是否最优。除了这种比较之外,我们还通过以下方式全面评估我们的先检测后分割管道的性能:(1)两种最流行的分割主干(U-Net和DeepLab_v3);(2)六种不同的图像分辨率( 、 、 、 、 和 );以及(3)两种不同的颜色空间(RGB和LAB)。我们的先检测后分割管道,采用DeepLab_v3分割框架对先前检测到的 分辨率的肾小球进行操作,获得了0.953的骰子相似系数(DSC),而端到端的Mask-RCNN管道的DSC为0.902。此外,我们发现,在先检测后分割框架的背景下,RGB和LAB颜色空间相互比较时,都不会产生更好的性能。与端到端方法相比,先检测后分割管道实现了更好的分割性能。我们的研究为其他研究人员在高分辨率WSI上为肾小球或其他具有相似特征的生物对象选择优化且最准确的分割方法提供了广泛的定量参考。

相似文献

4
Boundary-aware glomerulus segmentation: Toward one-to-many stain generalization.边界感知肾小球分割:迈向多染色通用化。
Comput Med Imaging Graph. 2022 Sep;100:102104. doi: 10.1016/j.compmedimag.2022.102104. Epub 2022 Aug 12.

引用本文的文献

1
Leveraging advanced feature extraction for improved kidney biopsy segmentation.利用先进的特征提取技术改进肾活检分割。
Front Med (Lausanne). 2025 Jun 18;12:1591999. doi: 10.3389/fmed.2025.1591999. eCollection 2025.
7
AI applications in renal pathology.人工智能在肾病理学中的应用。
Kidney Int. 2021 Jun;99(6):1309-1320. doi: 10.1016/j.kint.2021.01.015. Epub 2021 Feb 10.

本文引用的文献

3
Glomerulosclerosis identification in whole slide images using semantic segmentation.使用语义分割识别全切片图像中的肾小球硬化。
Comput Methods Programs Biomed. 2020 Feb;184:105273. doi: 10.1016/j.cmpb.2019.105273. Epub 2019 Dec 19.
4
Computational Segmentation and Classification of Diabetic Glomerulosclerosis.糖尿病肾小球硬化的计算分割与分类。
J Am Soc Nephrol. 2019 Oct;30(10):1953-1967. doi: 10.1681/ASN.2018121259. Epub 2019 Sep 5.
5
Segmentation of Glomeruli Within Trichrome Images Using Deep Learning.使用深度学习对三色图像中的肾小球进行分割。
Kidney Int Rep. 2019 Apr 15;4(7):955-962. doi: 10.1016/j.ekir.2019.04.008. eCollection 2019 Jul.
6
Deep Vision: Learning to Identify Renal Disease With Neural Networks.深度视觉:利用神经网络识别肾脏疾病的研究
Kidney Int Rep. 2019 May 7;4(7):914-916. doi: 10.1016/j.ekir.2019.04.023. eCollection 2019 Jul.
8
Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections.深度学习移植肾冷冻切片中的全球肾小球硬化症。
IEEE Trans Med Imaging. 2018 Dec;37(12):2718-2728. doi: 10.1109/TMI.2018.2851150. Epub 2018 Jun 27.
10
Segmenting renal whole slide images virtually without training data.无训练数据的肾脏全切片图像虚拟分割。
Comput Biol Med. 2017 Nov 1;90:88-97. doi: 10.1016/j.compbiomed.2017.09.014. Epub 2017 Sep 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验