Suppr超能文献

3D-NASE:一种基于3D CT鼻腔注意力的新型分割集成方法。

3D-NASE: A Novel 3D CT Nasal Attention-Based Segmentation Ensemble.

作者信息

Pani Alessandro, Zedda Luca, Mura Davide Antonio, Loddo Andrea, Di Ruberto Cecilia

机构信息

Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.

出版信息

J Imaging. 2025 May 7;11(5):148. doi: 10.3390/jimaging11050148.

Abstract

Accurate segmentation of the nasal cavity and paranasal sinuses in CT scans is crucial for disease assessment, treatment planning, and surgical navigation. It also facilitates the advanced computational modeling of airflow dynamics and enhances endoscopic surgery preparation. This work presents a novel ensemble framework for 3D nasal CT segmentation that synergistically combines CNN-based and transformer-based architectures, 3D-NASE. By integrating 3D U-Net, UNETR, Swin UNETR, SegResNet, DAF3D, and V-Net with majority and soft voting strategies, our approach leverages both local details and global context to improve segmentation accuracy and robustness. Results on the NasalSeg dataset demonstrate that the proposed ensemble method surpasses previous state-of-the-art results by achieving a 35.88% improvement in the DICE score and reducing the standard deviation by 4.53%. These promising results highlight the potential of our method to advance clinical workflows in diagnosis, treatment planning, and surgical navigation while also promoting further research into computationally efficient and highly accurate segmentation techniques.

摘要

在CT扫描中准确分割鼻腔和鼻窦对于疾病评估、治疗规划及手术导航至关重要。它还有助于对气流动力学进行先进的计算建模,并加强内窥镜手术准备。这项工作提出了一种用于三维鼻腔CT分割的新型集成框架,即3D - NASE,它将基于卷积神经网络(CNN)和基于Transformer的架构协同结合。通过将3D U-Net、UNETR、Swin UNETR、SegResNet、DAF3D和V-Net与多数投票和软投票策略相结合,我们的方法利用局部细节和全局上下文来提高分割的准确性和鲁棒性。在NasalSeg数据集上的结果表明,所提出的集成方法在DICE分数上提高了35.88%,标准偏差降低了4.53%,超过了先前的最先进结果。这些有前景的结果凸显了我们的方法在推进诊断、治疗规划和手术导航中的临床工作流程方面的潜力,同时也促进了对计算高效且高度准确的分割技术的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/021d/12112669/d5bb2ea1cd30/jimaging-11-00148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验