Suppr超能文献

自支撑碳基主体的亲锂修饰及锂金属的沉积/剥离行为

Lithiophilic Modification of Self-Supporting Carbon-Based Hosts and Lithium Metal Plating/Stripping Behaviors.

作者信息

Jiang Zipeng, Xie Shoudong, Yang Guijun, Chen Huiyuan, Lv Jiahang, Li Ang, Fan Chengwei, Song Huaihe

机构信息

Qinghai Provincial Key Laboratory of Advanced Materials and Applied Technology, Qinghai University, Xining 810016, China.

College of Chemical Engineering, Qinghai University, Xining 810016, China.

出版信息

Nanomaterials (Basel). 2025 May 15;15(10):746. doi: 10.3390/nano15100746.

Abstract

Metallic lithium anodes possess the lowest redox potential (-3.04 V vs. SHE) and an ultra-high theoretical capacity (3860 mAh g, 2061 mAh cm). However, during electrochemical cycling, lithium metal tends to plate unevenly, leading to the formation of lithium dendrites. Moreover, severe electrochemical corrosion occurs at the interface between metallic lithium and traditional copper foil current collectors. To address these issues, we selected corrosion-resistant carbon paper as a lithium metal host and modified a uniform distribution of silver nanoparticles and a F-doped amorphous carbon structure as a highly lithiophilic F-CP@Ag host to enhance lithium-ion transport kinetics and achieve improved affinity with lithium metal. The silver nanoparticles reduced the lithium nucleation energy barrier, while F doping resulted in a LiF-rich solid electrolyte interphase that better accommodated volume changes in lithium metal. These two strategies worked together to ensure uniform and stable lithium metal plating/stripping on the F-CP@Ag host. Consequently, under the conditions of 1 mA cm and 1 mAh cm, the symmetric cell exhibited stable cycling with a polarization voltage of 8 mV for up to 1400 h. This work highlights the corrosion problem of lithium metal on traditional copper foil current collectors and provides guidance for the long-term cycling stability of lithium metal anodes.

摘要

金属锂阳极具有最低的氧化还原电位(相对于标准氢电极,为-3.04 V)和超高的理论容量(3860 mAh g,2061 mAh cm)。然而,在电化学循环过程中,锂金属倾向于不均匀地沉积,导致锂枝晶的形成。此外,在金属锂与传统铜箔集流体的界面处会发生严重的电化学腐蚀。为了解决这些问题,我们选择了耐腐蚀的碳纸作为锂金属主体,并将均匀分布的银纳米颗粒和F掺杂的非晶碳结构修饰为高度亲锂的F-CP@Ag主体,以增强锂离子传输动力学并提高与锂金属的亲和力。银纳米颗粒降低了锂的成核能垒,而F掺杂导致形成富含LiF的固体电解质界面,能更好地适应锂金属的体积变化。这两种策略共同作用,确保了锂金属在F-CP@Ag主体上均匀、稳定地沉积/剥离。因此,在1 mA cm和1 mAh cm的条件下,对称电池表现出稳定的循环,极化电压为8 mV,可持续长达1400 h。这项工作突出了锂金属在传统铜箔集流体上的腐蚀问题,并为锂金属阳极的长期循环稳定性提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e3c/12113940/7496c4dc2ac1/nanomaterials-15-00746-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验