Qin Wen, Guo Shasha, Liu Zixi, Zhang Peikun, Zhu Chao, Wu Yao, Qiao Ruixi, Liu Zheng, Guo Wanlin, Zhang Zhuhua
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
Nat Commun. 2025 May 27;16(1):4924. doi: 10.1038/s41467-025-60127-3.
Single-metal-atom chains (SMACs) possess a variety of unique properties and functionalities but suffer from ambient vulnerability due to their delicate one-atom-width structures. While some SMACs can be effectively stabilized by nanochannel confining, it remains a pressing challenge to experimentally realize more versatile atomic chains with sufficient stability and extended length. Here, we propose a computational protocol to identify transition metals capable of forming SMACs along mirror twin boundaries in two-dimensional metal dichalcogenides. Taking MoS as a prototypical example, our thermodynamics and kinetics calculations indicate that Co, Ni, Rh, Pd, and Pt atoms can be enticed by the progressive formation of mirror twin boundaries to yield robust SMACs; whereas other transition metal elements tend to result in either substitutional doping or nanoclusters. These findings are supported by successful experimental synthesis of Co-, Ni-, Pd- and Pt-based SMACs using a chemical vapor co-deposition method, which exhibit high stability due to their covalent bonding with MoS grains. These results lay a solid foundation for investigating exotic transport behaviors within extremely confined channels.
单金属原子链(SMACs)具有多种独特的性质和功能,但由于其精细的单原子宽度结构,在环境中易受影响。虽然一些SMACs可以通过纳米通道限制有效地稳定下来,但通过实验实现具有足够稳定性和更长长度的更多样化原子链仍然是一个紧迫的挑战。在这里,我们提出了一种计算方法,以识别能够在二维金属二硫属化物中沿着镜像孪晶界形成SMACs的过渡金属。以MoS为例,我们的热力学和动力学计算表明,Co、Ni、Rh、Pd和Pt原子可以被镜像孪晶界的逐步形成所吸引,从而产生稳定的SMACs;而其他过渡金属元素则倾向于导致替代掺杂或纳米团簇。使用化学气相共沉积方法成功实验合成了基于Co、Ni、Pd和Pt的SMACs,这些结果支持了上述发现,由于它们与MoS晶粒的共价键合,这些SMACs表现出高稳定性。这些结果为研究极窄通道内的奇异输运行为奠定了坚实的基础。