Li Wei, Huang Jianqi, Han Bo, Xie Chunyu, Huang Xiaoxiao, Tian Kesong, Zeng Yi, Zhao Zijing, Gao Peng, Zhang Yanfeng, Yang Teng, Zhang Zhidong, Sun Shengnan, Hou Yanglong
Department of Materials Science and Engineering, College of Engineering Peking University Beijing 100871 China.
Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD) Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) Beijing 100871 China.
Adv Sci (Weinh). 2020 Jul 1;7(16):2001080. doi: 10.1002/advs.202001080. eCollection 2020 Aug.
Substitutional doping of layered transition metal dichalcogenides (TMDs) has been proved to be an effective route to alter their intrinsic properties and achieve tunable bandgap, electrical conductivity and magnetism, thus greatly broadening their applications. However, achieving valid substitutional doping of TMDs remains a great challenge to date. Herein, a distinctive molten-salt-assisted chemical vapor deposition (MACVD) method is developed to match the volatilization of the dopants perfectly with the growth process of monolayer MoS, realizing the substitutional doping of transition metal Fe, Co, and Mn. This doping strategy effectively alters the electronic structure and phononic properties of the pristine MoS. In addition, a temperature-dependent Raman spectrum is employed to explore the effect of dopants on the lattice dynamics and first-order temperature coefficient of monolayer MoS, and this doping effect is illustrated in depth combined with the theoretical calculation. This work provides an intriguing and powerful doping strategy for TMDs through employing molten salt in the CVD system, paving the way for exploring new properties of 2D TMDs and extending their applications into spintronics, catalytic chemistry and photoelectric devices.
层状过渡金属二硫属化物(TMDs)的替代掺杂已被证明是改变其固有性质并实现可调带隙、电导率和磁性的有效途径,从而极大地拓宽了它们的应用范围。然而,迄今为止,实现TMDs的有效替代掺杂仍然是一个巨大的挑战。在此,开发了一种独特的熔盐辅助化学气相沉积(MACVD)方法,使掺杂剂的挥发与单层MoS的生长过程完美匹配,实现了过渡金属Fe、Co和Mn的替代掺杂。这种掺杂策略有效地改变了原始MoS的电子结构和声子性质。此外,利用温度依赖拉曼光谱研究了掺杂剂对单层MoS晶格动力学和一阶温度系数的影响,并结合理论计算深入阐述了这种掺杂效应。这项工作通过在CVD系统中使用熔盐为TMDs提供了一种有趣且强大的掺杂策略,为探索二维TMDs的新性质并将其应用扩展到自旋电子学、催化化学和光电器件领域铺平了道路。