Qiu Weihan, Zhu Fangjie, Hao Tianyong, Wang Maojie, Huang Runyue
School of Computer Science, South China Normal University, Guangzhou, China.
Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, China.
Sci Rep. 2025 May 27;15(1):18563. doi: 10.1038/s41598-025-03243-w.
Time series prediction has been widely used in the medical field to predict patient recurrence or physiological fluctuations. However, the adequacy of the existing methods for contextual information interaction is still insufficient when dealing with a longer memory need in clinical data modelling. In order to enhance the utilization of memory interaction, this paper introduces a new contextual interaction refinement method MB-LSTM by incorporating a Hidden Layer Information Interaction Intensifier. The MB-LSTM method allows for simultaneous interaction of input and hidden layer states at each time step to enhance capability of capturing complex temporal relationships. Besides, more features of time series data are learned utilizing contrastive learning and a data augmentation scheme based on Kernel Density Estimation is designed to identify more accurate features from time series data. The method is evaluated on a real clinical dataset including 1053 records of patient with Gouty arthritis from the Guangdong Provincial Traditional Chinese Medicine Hospital by predicting the subsequent status of patients. The results show the proposed method achieves state-of-the-art performance by 0.5-7.2% using four different evaluation metrics compared with baseline methods.
时间序列预测已在医学领域广泛用于预测患者复发或生理波动。然而,在临床数据建模中处理更长的记忆需求时,现有上下文信息交互方法的充分性仍然不足。为了提高记忆交互的利用率,本文通过引入隐藏层信息交互增强器,介绍了一种新的上下文交互细化方法MB-LSTM。MB-LSTM方法允许在每个时间步同时进行输入和隐藏层状态的交互,以增强捕获复杂时间关系的能力。此外,利用对比学习学习时间序列数据的更多特征,并设计了一种基于核密度估计的数据增强方案,以从时间序列数据中识别更准确的特征。通过预测患者的后续状态,在一个包含来自广东省中医院的1053例痛风性关节炎患者记录的真实临床数据集上对该方法进行了评估。结果表明,与基线方法相比,所提出的方法使用四种不同的评估指标实现了0.5%-7.2%的领先性能。