Suppr超能文献

新型冠状病毒(COVID-19)病例的实时预测与风险评估:一项数据驱动的分析。

Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis.

作者信息

Chakraborty Tanujit, Ghosh Indrajit

机构信息

SQC and OR Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India.

AERU, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India.

出版信息

Chaos Solitons Fractals. 2020 Jun;135:109850. doi: 10.1016/j.chaos.2020.109850. Epub 2020 Apr 30.

Abstract

The coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern affecting 201 countries and territories around the globe. As of April 4, 2020, it has caused a pandemic outbreak with more than 11,16,643 confirmed infections and more than 59,170 reported deaths worldwide. The main focus of this paper is two-fold: (a) generating short term (real-time) forecasts of the future COVID-19 cases for multiple countries; (b) risk assessment (in terms of case fatality rate) of the novel COVID-19 for some profoundly affected countries by finding various important demographic characteristics of the countries along with some disease characteristics. To solve the first problem, we presented a hybrid approach based on autoregressive integrated moving average model and Wavelet-based forecasting model that can generate short-term (ten days ahead) forecasts of the number of daily confirmed cases for Canada, France, India, South Korea, and the UK. The predictions of the future outbreak for different countries will be useful for the effective allocation of health care resources and will act as an early-warning system for government policymakers. In the second problem, we applied an optimal regression tree algorithm to find essential causal variables that significantly affect the case fatality rates for different countries. This data-driven analysis will necessarily provide deep insights into the study of early risk assessments for 50 immensely affected countries.

摘要

2019冠状病毒病(COVID-19)已成为一场国际关注的突发公共卫生事件,影响着全球201个国家和地区。截至2020年4月4日,它已引发全球大流行,全球确诊感染病例超过1116643例,报告死亡病例超过59170例。本文的主要重点有两个方面:(a)对多个国家未来的COVID-19病例进行短期(实时)预测;(b)通过找出一些受严重影响国家的各种重要人口特征以及一些疾病特征,对新型COVID-19进行风险评估(以病死率衡量)。为了解决第一个问题,我们提出了一种基于自回归积分移动平均模型和基于小波的预测模型的混合方法,该方法可以对加拿大、法国、印度、韩国和英国的每日确诊病例数进行短期(提前十天)预测。对不同国家未来疫情的预测将有助于有效分配医疗资源,并将作为政府政策制定者的预警系统。在第二个问题中,我们应用了一种最优回归树算法来找出对不同国家病死率有显著影响的基本因果变量。这种数据驱动的分析将必然为对50个受严重影响国家的早期风险评估研究提供深刻见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a31/7190506/f404a12cca90/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验