文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于解决癌症耐药性的新型多功能生物材料

Emerging Multifunctional Biomaterials for Addressing Drug Resistance in Cancer.

作者信息

El-Tanani Mohamed, Rabbani Syed Arman, Babiker Rasha, El-Tanani Yahia, Satyam Shakta Mani, Porntaveetus Thantrira

机构信息

RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.

RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.

出版信息

Biology (Basel). 2025 May 2;14(5):497. doi: 10.3390/biology14050497.


DOI:10.3390/biology14050497
PMID:40427686
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12108606/
Abstract

Drug resistance remains a major barrier to effective cancer treatment, contributing to poor patient outcomes. Multifunctional biomaterials integrating electrical and catalytic properties offer a transformative strategy to target diverse resistance mechanisms. This review explores their ability to modulate cellular processes, remodel the tumor microenvironment (TME), and enhance drug delivery. Electrically active biomaterials enhance drug uptake and apoptotic sensitivity by altering membrane potentials, ion channels, and intracellular signaling, synergizing with chemotherapy. Catalytic biomaterials generate reactive oxygen species (ROS), activate prodrugs, reprogram hypoxic and acidic TME, and degrade the extracellular matrix (ECM) to improve drug penetration. Hybrid nanomaterials (e.g., conductive hydrogels, electrocatalytic nanoparticles), synergize electrical and catalytic properties for localized, stimuli-responsive therapy and targeted drug release, minimizing systemic toxicity. Despite challenges in biocompatibility and scalability, future integration with immunotherapy, personalized medicine, and intelligent self-adaptive systems capable of real-time tumor response promises to accelerate clinical translation. The development of these adaptive biomaterials, alongside advancements in nanotechnology and AI-driven platforms, represents the next frontier in precision oncology. This review highlights the potential of multifunctional biomaterials to revolutionize cancer therapy by addressing multidrug resistance at cellular, genetic, and microenvironmental levels, offering a roadmap to improve therapeutic outcomes and reshape oncology practice.

摘要

耐药性仍然是有效癌症治疗的主要障碍,导致患者预后不佳。整合电学和催化特性的多功能生物材料提供了一种变革性策略,以应对多种耐药机制。本综述探讨了它们调节细胞过程、重塑肿瘤微环境(TME)和增强药物递送的能力。电活性生物材料通过改变膜电位、离子通道和细胞内信号传导来增强药物摄取和凋亡敏感性,与化疗协同作用。催化生物材料产生活性氧(ROS)、激活前药、重新编程缺氧和酸性TME,并降解细胞外基质(ECM)以改善药物渗透。混合纳米材料(如导电水凝胶、电催化纳米颗粒)将电学和催化特性协同用于局部、刺激响应治疗和靶向药物释放,将全身毒性降至最低。尽管在生物相容性和可扩展性方面存在挑战,但未来与免疫疗法、个性化医学以及能够实时响应肿瘤的智能自适应系统相结合有望加速临床转化。这些自适应生物材料的发展,以及纳米技术和人工智能驱动平台的进步,代表了精准肿瘤学的下一个前沿领域。本综述强调了多功能生物材料通过在细胞、基因和微环境水平上解决多药耐药性来彻底改变癌症治疗的潜力,提供了一条改善治疗效果和重塑肿瘤学实践的路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/f96560f3ec2c/biology-14-00497-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/ad91a6b70f47/biology-14-00497-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/cb2cb092fe9b/biology-14-00497-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/07055778e665/biology-14-00497-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/521953376394/biology-14-00497-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/f96560f3ec2c/biology-14-00497-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/ad91a6b70f47/biology-14-00497-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/cb2cb092fe9b/biology-14-00497-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/07055778e665/biology-14-00497-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/521953376394/biology-14-00497-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccab/12108606/f96560f3ec2c/biology-14-00497-g005.jpg

相似文献

[1]
Emerging Multifunctional Biomaterials for Addressing Drug Resistance in Cancer.

Biology (Basel). 2025-5-2

[2]
Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases.

J Funct Biomater. 2025-1-14

[3]
Nanotechnology-Enhanced siRNA Delivery: Revolutionizing Cancer Therapy.

ACS Appl Bio Mater. 2025-5-12

[4]
Application of nanomaterials in precision treatment of lung cancer.

iScience. 2024-12-26

[5]
Polyglutamic acid in cancer nanomedicine: Advances in multifunctional delivery platforms.

Int J Pharm. 2025-5-15

[6]
Manganese oxide nanomaterials: bridging synthesis and therapeutic innovations for cancer treatment.

Nano Converg. 2024-11-27

[7]
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems.

Pharmaceutics. 2025-2-24

[8]
A tumor-specific ROS self-supply enhanced cascade-responsive prodrug activation nanosystem for amplified chemotherapy against multidrug-resistant tumors.

Acta Biomater. 2023-7-1

[9]
AI-driven innovations in smart multifunctional nanocarriers for drug and gene delivery: A mini-review.

Crit Rev Oncol Hematol. 2025-6

[10]
Metal ions and nanomaterials for targeted bone cancer immunotherapy.

Front Immunol. 2025-3-17

引用本文的文献

[1]
3-Aminobenzamide-linked Multifunctional Nanoparticles: A Potent Strategy for Modulating PARP1 in Cervical Cancer Cells.

Cell Biochem Biophys. 2025-6-30

本文引用的文献

[1]
Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers.

Pharmaceuticals (Basel). 2025-2-26

[2]
Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer.

Mol Biomed. 2025-1-6

[3]
Iron-based MOF with Catalase-like activity improves the synergistic therapeutic effect of PDT/ferroptosis/starvation therapy by reversing the tumor hypoxic microenvironment.

J Nanobiotechnology. 2024-11-14

[4]
Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment.

Adv Mater. 2025-1

[5]
Expert consensus on the use of third-generation EGFR-TKIs in EGFR-mutated advanced non-small cell lung cancer with various T790M mutations post-resistance to first-/second-generation EGFR-TKIs.

Ther Adv Med Oncol. 2024-10-17

[6]
Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects.

Signal Transduct Target Ther. 2024-10-14

[7]
Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment.

Heliyon. 2024-8-30

[8]
Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies.

MedComm (2020). 2024-8-24

[9]
Bioelectronics for electrical stimulation: materials, devices and biomedical applications.

Chem Soc Rev. 2024-8-27

[10]
Electrically conductive coatings in tissue engineering.

Acta Biomater. 2024-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索