El-Tanani Mohamed, Rabbani Syed Arman, Babiker Rasha, El-Tanani Yahia, Satyam Shakta Mani, Porntaveetus Thantrira
RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
Biology (Basel). 2025 May 2;14(5):497. doi: 10.3390/biology14050497.
Drug resistance remains a major barrier to effective cancer treatment, contributing to poor patient outcomes. Multifunctional biomaterials integrating electrical and catalytic properties offer a transformative strategy to target diverse resistance mechanisms. This review explores their ability to modulate cellular processes, remodel the tumor microenvironment (TME), and enhance drug delivery. Electrically active biomaterials enhance drug uptake and apoptotic sensitivity by altering membrane potentials, ion channels, and intracellular signaling, synergizing with chemotherapy. Catalytic biomaterials generate reactive oxygen species (ROS), activate prodrugs, reprogram hypoxic and acidic TME, and degrade the extracellular matrix (ECM) to improve drug penetration. Hybrid nanomaterials (e.g., conductive hydrogels, electrocatalytic nanoparticles), synergize electrical and catalytic properties for localized, stimuli-responsive therapy and targeted drug release, minimizing systemic toxicity. Despite challenges in biocompatibility and scalability, future integration with immunotherapy, personalized medicine, and intelligent self-adaptive systems capable of real-time tumor response promises to accelerate clinical translation. The development of these adaptive biomaterials, alongside advancements in nanotechnology and AI-driven platforms, represents the next frontier in precision oncology. This review highlights the potential of multifunctional biomaterials to revolutionize cancer therapy by addressing multidrug resistance at cellular, genetic, and microenvironmental levels, offering a roadmap to improve therapeutic outcomes and reshape oncology practice.
耐药性仍然是有效癌症治疗的主要障碍,导致患者预后不佳。整合电学和催化特性的多功能生物材料提供了一种变革性策略,以应对多种耐药机制。本综述探讨了它们调节细胞过程、重塑肿瘤微环境(TME)和增强药物递送的能力。电活性生物材料通过改变膜电位、离子通道和细胞内信号传导来增强药物摄取和凋亡敏感性,与化疗协同作用。催化生物材料产生活性氧(ROS)、激活前药、重新编程缺氧和酸性TME,并降解细胞外基质(ECM)以改善药物渗透。混合纳米材料(如导电水凝胶、电催化纳米颗粒)将电学和催化特性协同用于局部、刺激响应治疗和靶向药物释放,将全身毒性降至最低。尽管在生物相容性和可扩展性方面存在挑战,但未来与免疫疗法、个性化医学以及能够实时响应肿瘤的智能自适应系统相结合有望加速临床转化。这些自适应生物材料的发展,以及纳米技术和人工智能驱动平台的进步,代表了精准肿瘤学的下一个前沿领域。本综述强调了多功能生物材料通过在细胞、基因和微环境水平上解决多药耐药性来彻底改变癌症治疗的潜力,提供了一条改善治疗效果和重塑肿瘤学实践的路线图。
Biology (Basel). 2025-5-2
J Funct Biomater. 2025-1-14
ACS Appl Bio Mater. 2025-5-12
iScience. 2024-12-26
Crit Rev Oncol Hematol. 2025-6
Front Immunol. 2025-3-17
Cell Biochem Biophys. 2025-6-30
Pharmaceuticals (Basel). 2025-2-26
Signal Transduct Target Ther. 2024-10-14
MedComm (2020). 2024-8-24
Chem Soc Rev. 2024-8-27
Acta Biomater. 2024-9-15