Balwe Sandip Gangadhar, Moon Dohyeon, Hong Minki, Song Joon Myong
College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
Nano Converg. 2024 Nov 27;11(1):48. doi: 10.1186/s40580-024-00456-z.
The advent of precision medicine in oncology emphasizes the urgent need for innovative therapeutic strategies that effectively integrate diagnosis and treatment while minimizing invasiveness. Manganese oxide nanomaterials (MONs) have emerged as a promising class of nanocarriers in biomedicine, particularly for targeted drug delivery and the therapeutic management of tumors. These nanomaterials are characterized by exceptional responsiveness to the tumor microenvironment (TME), high catalytic efficiency, favorable biodegradability, and advanced capabilities in magnetic resonance imaging. These attributes significantly enhance drug delivery, facilitate real-time bioimaging, and enable early tumor detection, thereby improving the precision and effectiveness of cancer therapies. This review highlights the significant advancements in the synthesis and therapeutic applications of MONs, beginning with a comprehensive overview of key synthetic methods, including thermal decomposition, potassium permanganate reduction, exfoliation, adsorption-oxidation, and hydro/solvothermal techniques. We delve into the preparation of MONs and H-MnO₂-based nanomaterials, emphasizing their chemical properties, surface modifications, and toxicity profiles, which are critical for their clinical application. Moreover, we discuss the notable applications of H-MnO₂-based nanomaterials in pH-responsive drug release, overcoming multidrug resistance (MDR), immunotherapy, and the development of nanovaccines for synergistic cancer treatments. By addressing the current challenges in the clinical translation of MONs, we propose future research directions for overcoming these obstacles. By underscoring the potential of MONs to transform cancer treatment paradigms, this review aims to inspire further investigations into their multifunctional applications in oncology, thus ultimately contributing to more effective and personalized therapeutic strategies.
肿瘤学中精准医学的出现凸显了对创新治疗策略的迫切需求,这些策略要能有效整合诊断与治疗,同时将侵入性降至最低。氧化锰纳米材料(MONs)已成为生物医学中一类有前景的纳米载体,尤其适用于靶向药物递送和肿瘤的治疗管理。这些纳米材料的特点是对肿瘤微环境(TME)具有卓越的响应性、高催化效率、良好的生物降解性以及先进的磁共振成像能力。这些特性显著增强了药物递送、促进了实时生物成像并实现了早期肿瘤检测,从而提高了癌症治疗的精准度和有效性。本综述重点介绍了MONs在合成和治疗应用方面的重大进展,首先全面概述了关键的合成方法,包括热分解、高锰酸钾还原、剥落、吸附氧化以及水热/溶剂热技术。我们深入探讨了MONs和基于H-MnO₂的纳米材料的制备,强调了它们的化学性质、表面修饰和毒性特征,这些对于它们的临床应用至关重要。此外,我们讨论了基于H-MnO₂的纳米材料在pH响应性药物释放、克服多药耐药性(MDR)、免疫疗法以及开发用于协同癌症治疗的纳米疫苗方面的显著应用。通过应对MONs临床转化中的当前挑战,我们提出了克服这些障碍的未来研究方向。通过强调MONs改变癌症治疗模式的潜力,本综述旨在激发对其在肿瘤学中多功能应用的进一步研究,从而最终有助于制定更有效和个性化的治疗策略。