Li Chunyu, Chen Shusheng, Zheng Zhuoguang, Zhu Yicun, Chen Bingsan, Xu Yongchao
Fujian Key Laboratory of Intelligent Machining Technology and Equipment, Fujian University of Technology, Fuzhou 350118, China.
Castech Inc., Fuzhou 350003, China.
Micromachines (Basel). 2025 Apr 24;16(5):495. doi: 10.3390/mi16050495.
This study addresses the critical challenge of precise control over active abrasive particles in magnetorheological polishing (MRP) through innovative core-shell particle engineering. A sol-gel synthesized CIP@SiO magnetic composite abrasive with controlled SiO encapsulation (20 nm shell thickness) was developed using tetraethyl orthosilicate (TEOS) as the silicon precursor, demonstrating significant advantages in optical-grade fused silica finishing. Systematic polishing experiments reveal that the core-shell architecture achieves a remarkable 20.16% improvement in surface quality (Ra = 1.03 nm) compared to conventional CIP/SiO mixed abrasives, with notably reduced surface defects despite a modest 8-12% decrease in material removal rate. Through synergistic analysis combining elastic microcontact mechanics modeling and molecular dynamics simulations, we establish that the SiO shell mediates stress distribution at tool-workpiece interfaces, effectively suppressing deep subsurface damage while maintaining nano-scale material removal efficiency. The time-dependent performance analysis further demonstrates that extended polishing durations with CIP@SiO composites progressively eliminate mid-spatial frequency errors without introducing new surface artifacts. These findings provide fundamental insights into designed abrasive architectures for precision finishing applications requiring sub-nanometer surface integrity control.
本研究通过创新的核壳颗粒工程解决了磁流变抛光(MRP)中对活性磨料颗粒进行精确控制这一关键挑战。以正硅酸乙酯(TEOS)作为硅前驱体,制备了一种具有可控SiO2包覆(壳层厚度为20 nm)的溶胶-凝胶合成CIP@SiO2磁性复合磨料,在光学级熔融石英抛光方面展现出显著优势。系统的抛光实验表明,与传统的CIP/SiO2混合磨料相比,核壳结构使表面质量(Ra = 1.03 nm)显著提高了20.16%,尽管材料去除率略有下降8 - 12%,但表面缺陷明显减少。通过结合弹性微接触力学建模和分子动力学模拟的协同分析,我们确定SiO2壳层介导了工具-工件界面处的应力分布,在保持纳米级材料去除效率的同时有效抑制了深层亚表面损伤。随时间变化的性能分析进一步表明,使用CIP@SiO2复合材料延长抛光时间可逐步消除中间空间频率误差,而不会引入新的表面缺陷。这些发现为需要亚纳米表面完整性控制的精密抛光应用中设计磨料结构提供了基本见解。