Zhou Yong, Lu Yanxi, Czubayko Franziska, Chen Jisheng, Zheng Shuwen, Mo Huaqing, Liu Rui, Weber Georg F, Grützmann Robert, Pilarsky Christian, David Paul
Department of Surgery, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
Int J Mol Sci. 2025 May 19;26(10):4876. doi: 10.3390/ijms26104876.
Pancreatic cancer (PC) is highly aggressive, with a 5-year survival rate of 12.8%, making early detection vital. However, non-specific symptoms and precursor lesions complicate diagnosis. Existing tools for the early detection of PC are limited. CAFs are crucial in cancer progression, invasion, and metastasis, yet their role in PC is poorly understood. This study analyzes mRNA data from PC samples to identify CAF-related genes and drugs for PC treatment using algorithms like EPIC, xCell, MCP-counter, and TIDE to quantify CAF infiltration. Weighted gene co-expression network analysis (WGCNA) identified 26 hub genes. Our analyses revealed eight prognostic genes, leading to establishing a six-gene model for assessing prognosis. Correlation analysis showed that the CAF risk score correlates with CAF infiltration and related markers. We also identified six potential drugs, observing significant differences between high-CAF and low-CAF risk groups. High CAF risk scores were associated with lower responses to immunotherapy and higher tumor mutation burdens. GSEA indicated that these scores are enriched in tumor microenvironment pathways. In summary, these six model genes can predict overall survival and responses to chemotherapy and immunotherapy for pancreatic cancer, offering valuable insights for future clinical strategies.
胰腺癌(PC)具有高度侵袭性,5年生存率为12.8%,因此早期检测至关重要。然而,非特异性症状和前驱病变使诊断复杂化。现有的胰腺癌早期检测工具有限。癌症相关成纤维细胞(CAFs)在癌症进展、侵袭和转移中起关键作用,但其在胰腺癌中的作用尚不清楚。本研究分析了胰腺癌样本的mRNA数据,使用EPIC、xCell、MCP-counter和TIDE等算法量化CAF浸润,以识别与CAF相关的基因和用于胰腺癌治疗的药物。加权基因共表达网络分析(WGCNA)确定了26个核心基因。我们的分析揭示了8个预后基因,从而建立了一个用于评估预后的六基因模型。相关性分析表明,CAF风险评分与CAF浸润及相关标志物相关。我们还确定了6种潜在药物,观察到高CAF和低CAF风险组之间存在显著差异。高CAF风险评分与免疫治疗反应较低和肿瘤突变负担较高相关。基因集富集分析(GSEA)表明,这些评分在肿瘤微环境通路中富集。总之,这六个模型基因可以预测胰腺癌的总生存期以及对化疗和免疫治疗的反应,为未来的临床策略提供有价值的见解。