Suppr超能文献

氮化钒单层及其异质结构的高自旋极化铁磁半导体的第一性原理研究

First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures.

作者信息

Hua Guiyuan, Wu Xuming, Ge Xujin, Zhou Tianhang, Shao Zhibin

机构信息

Basic Medical College, Binzhou Medical University, Yantai 264003, China.

College of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China.

出版信息

Molecules. 2025 May 14;30(10):2156. doi: 10.3390/molecules30102156.

Abstract

The newly discovered 2D spin-gapless magnetic materials, which provide new opportunities for combining spin polarization and the quantum anomalous Hall effect, provide a new method for the design and application of memory and nanoscale devices. However, a low Curie temperature () is a common limitation in most 2D ferromagnetic materials, and research on the topological properties of nontrivial 2D spin-gapless materials is still limited. We predict a novel spin-gapless semiconductor of monolayer h-VN, which has a high Curie temperature (~543 K), 100% spin polarization, and nontrivial topological properties. A nontrivial band gap is opened in the spin-gapless state when considering the spin-orbit coupling (SOC); it can increase with the intensity of spin-orbit coupling and the band gap increases linearly with SOC. By calculating the Chern number and edge states, we find that when the SOC strength is less than 250%, the monolayer h-VN is a quantum anomalous Hall insulator with a Chern number = 1. In addition, the monolayer h-VN still belongs to the quantum anomalous Hall insulators with its tensile strain. Interestingly, the quantum anomalous Hall effect with a non-zero Chern number can be maintained when using h-BN as the substrate, making the designed structure more suitable for experimental implementation. Our results provide an ideal candidate material for achieving the QAHE at a high Curie temperature.

摘要

新发现的二维自旋无隙磁性材料为结合自旋极化和量子反常霍尔效应提供了新机遇,为存储器和纳米级器件的设计与应用提供了新方法。然而,低居里温度()是大多数二维铁磁材料的常见限制,对非平凡二维自旋无隙材料拓扑性质的研究仍然有限。我们预测了一种新型的单层h-VN自旋无隙半导体,它具有高居里温度(约543 K)、100%的自旋极化和非平凡的拓扑性质。考虑自旋轨道耦合(SOC)时,在自旋无隙状态下会打开一个非平凡的带隙;它会随着自旋轨道耦合强度的增加而增大,且带隙随SOC呈线性增加。通过计算陈数和边缘态,我们发现当SOC强度小于250%时,单层h-VN是陈数 = 1的量子反常霍尔绝缘体。此外,单层h-VN在拉伸应变下仍属于量子反常霍尔绝缘体。有趣的是,当使用h-BN作为衬底时,可以保持具有非零陈数的量子反常霍尔效应,使设计的结构更适合实验实现。我们的结果为在高居里温度下实现量子反常霍尔效应提供了一种理想的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa9/12113942/337e48698719/molecules-30-02156-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验