Suppr超能文献

一种基于完全迁移学习的管道,用于从显微镜照片中区分特定致病性酵母。

A Complete Transfer Learning-Based Pipeline for Discriminating Between Select Pathogenic Yeasts from Microscopy Photographs.

作者信息

Parker Ryan A, Hannagan Danielle S, Strydom Jan H, Boon Christopher J, Fussell Jessica, Mitchell Chelbie A, Moerschel Katie L, Valter-Franco Aura G, Cornelison Christopher T

机构信息

School of Data Science and Analytics, Kennesaw State University, Kennesaw, GA 30144, USA.

BioInnovation Laboratory, Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA.

出版信息

Pathogens. 2025 May 21;14(5):504. doi: 10.3390/pathogens14050504.

Abstract

Pathogenic yeasts are an increasing concern in healthcare, with species like often displaying drug resistance and causing high mortality in immunocompromised patients. The need for rapid and accessible diagnostic methods for accurate yeast identification is critical, especially in resource-limited settings. This study presents a convolutional neural network (CNN)-based approach for classifying pathogenic yeast species from microscopy images. Using transfer learning, we trained the model to identify six yeast species from simple micrographs, achieving high classification accuracy (93.91% at the patch level, 99.09% at the whole image level) and low misclassification rates across species, with the best performing model. Our pipeline offers a streamlined, cost-effective diagnostic tool for yeast identification, enabling faster response times in clinical environments and reducing reliance on costly and complex molecular methods.

摘要

致病性酵母在医疗保健领域日益受到关注,像[具体物种未给出]这样的物种常常表现出耐药性,并在免疫功能低下的患者中导致高死亡率。对于准确鉴定酵母而言,快速且易于获取的诊断方法至关重要,尤其是在资源有限的环境中。本研究提出了一种基于卷积神经网络(CNN)的方法,用于从显微镜图像中对致病性酵母物种进行分类。通过迁移学习,我们训练模型从简单的显微照片中识别六种酵母物种,使用性能最佳的模型实现了较高的分类准确率(补丁级别为93.91%,整幅图像级别为99.09%)以及跨物种的低错误分类率。我们的流程为酵母鉴定提供了一种简化、经济高效的诊断工具,能够在临床环境中实现更快的响应时间,并减少对昂贵且复杂的分子方法的依赖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e7/12114329/4eafa29ab389/pathogens-14-00504-g001.jpg

相似文献

4
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
10
CNN based method for classifying cervical cancer cells in pap smear images.
Sci Rep. 2025 Jul 4;15(1):23936. doi: 10.1038/s41598-025-10009-x.

本文引用的文献

1
Automatic classification of Candida species using Raman spectroscopy and machine learning.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 5;290:122270. doi: 10.1016/j.saa.2022.122270. Epub 2022 Dec 22.
2
4
Machine Learning Approach Identified Multi-Platform Factors for Caries Prediction in Child-Mother Dyads.
Front Cell Infect Microbiol. 2021 Aug 19;11:727630. doi: 10.3389/fcimb.2021.727630. eCollection 2021.
5
: A Quick Review on Identification, Current Treatments, and Challenges.
Int J Mol Sci. 2021 Apr 25;22(9):4470. doi: 10.3390/ijms22094470.
6
: An Overview of How to Screen, Detect, Test and Control This Emerging Pathogen.
Antibiotics (Basel). 2020 Nov 5;9(11):778. doi: 10.3390/antibiotics9110778.
7
Identification of Drug Resistant .
Front Microbiol. 2019 Aug 20;10:1918. doi: 10.3389/fmicb.2019.01918. eCollection 2019.
8
On the Origins of a Species: What Might Explain the Rise of ?
J Fungi (Basel). 2019 Jul 6;5(3):58. doi: 10.3390/jof5030058.
9
Candida auris: a Review of the Literature.
Clin Microbiol Rev. 2017 Nov 15;31(1). doi: 10.1128/CMR.00029-17. Print 2018 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验