Parker Ryan A, Hannagan Danielle S, Strydom Jan H, Boon Christopher J, Fussell Jessica, Mitchell Chelbie A, Moerschel Katie L, Valter-Franco Aura G, Cornelison Christopher T
School of Data Science and Analytics, Kennesaw State University, Kennesaw, GA 30144, USA.
BioInnovation Laboratory, Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 30144, USA.
Pathogens. 2025 May 21;14(5):504. doi: 10.3390/pathogens14050504.
Pathogenic yeasts are an increasing concern in healthcare, with species like often displaying drug resistance and causing high mortality in immunocompromised patients. The need for rapid and accessible diagnostic methods for accurate yeast identification is critical, especially in resource-limited settings. This study presents a convolutional neural network (CNN)-based approach for classifying pathogenic yeast species from microscopy images. Using transfer learning, we trained the model to identify six yeast species from simple micrographs, achieving high classification accuracy (93.91% at the patch level, 99.09% at the whole image level) and low misclassification rates across species, with the best performing model. Our pipeline offers a streamlined, cost-effective diagnostic tool for yeast identification, enabling faster response times in clinical environments and reducing reliance on costly and complex molecular methods.
致病性酵母在医疗保健领域日益受到关注,像[具体物种未给出]这样的物种常常表现出耐药性,并在免疫功能低下的患者中导致高死亡率。对于准确鉴定酵母而言,快速且易于获取的诊断方法至关重要,尤其是在资源有限的环境中。本研究提出了一种基于卷积神经网络(CNN)的方法,用于从显微镜图像中对致病性酵母物种进行分类。通过迁移学习,我们训练模型从简单的显微照片中识别六种酵母物种,使用性能最佳的模型实现了较高的分类准确率(补丁级别为93.91%,整幅图像级别为99.09%)以及跨物种的低错误分类率。我们的流程为酵母鉴定提供了一种简化、经济高效的诊断工具,能够在临床环境中实现更快的响应时间,并减少对昂贵且复杂的分子方法的依赖。