Suppr超能文献

滚动轴承故障诊断的开集识别方法研究

Research on Open-Set Recognition Methods for Rolling Bearing Fault Diagnosis.

作者信息

Xu Jia, Wang Yan, Xu Renyi, Wang Hailin, Zhou Xinzhi

机构信息

School of Electronic Information, Sichuan University, Chengdu 610065, China.

National Key Laboratory of Science and Technology on Reactor System Design Technology, Nuclear Power Institute of China, Chengdu 610213, China.

出版信息

Sensors (Basel). 2025 May 10;25(10):3019. doi: 10.3390/s25103019.

Abstract

In rolling bearing fault diagnosis, when an unknown fault is present, the Closed-Set Recognition (CSR) method tends to misclassify it as a known fault. To address this issue, an Open-Set Recognition (OSR) framework is proposed for rolling bearing fault diagnosis in this study. The framework is built upon a serial multi-scale convolutional prototype learning (SMCPL) network, enhanced with an efficient channel attention (ECA) mechanism to extract the most critical fault features. The extracted features are fed into the Density Peak Clustering (DPC) module, which identifies known and unknown classes based on the computed local densities and relative distances. Finally, validation is performed on the Case Western Reserve University (CWRU) dataset, the Xi'an Jiaotong University rolling bearing accelerated life test dataset (XJTU-SY), and the Paderborn University bearing dataset (PU), Germany, and the framework is comprehensively evaluated in terms of several evaluation metrics, such as normalization accuracy and feature visualization. The experimental results show that SMCPL-ECA-DPC outperforms the comparative methods of SMCPL, CPL, ANEDL, CNN, and OpenMax and has high diagnostic performance in the identification of unknown faults.

摘要

在滚动轴承故障诊断中,当存在未知故障时,闭集识别(CSR)方法往往会将其误分类为已知故障。为了解决这个问题,本研究提出了一种用于滚动轴承故障诊断的开集识别(OSR)框架。该框架基于串行多尺度卷积原型学习(SMCPL)网络构建,并通过高效通道注意力(ECA)机制进行增强,以提取最关键的故障特征。提取的特征被输入到密度峰值聚类(DPC)模块中,该模块根据计算出的局部密度和相对距离来识别已知和未知类别。最后,在凯斯西储大学(CWRU)数据集、西安交通大学滚动轴承加速寿命试验数据集(XJTU-SY)以及德国帕德博恩大学轴承数据集(PU)上进行验证,并根据归一化准确率和特征可视化等多个评估指标对该框架进行全面评估。实验结果表明,SMCPL-ECA-DPC优于SMCPL、CPL、ANEDL、CNN和OpenMax等对比方法,在识别未知故障方面具有较高的诊断性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验