Majchrowska Sylwia, Mikołajczyk Agnieszka, Ferlin Maria, Klawikowska Zuzanna, Plantykow Marta A, Kwasigroch Arkadiusz, Majek Karol
Wrocław University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland.
Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
Waste Manag. 2022 Feb 1;138:274-284. doi: 10.1016/j.wasman.2021.12.001. Epub 2021 Dec 14.
Waste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by providing a critical analysis of over ten existing waste datasets and a brief but constructive review of the existing Deep Learning-based waste detection approaches. This article collects and summarizes previous studies and provides the results of authors' experiments on the presented datasets, all intended to create a first replicable baseline for litter detection. Moreover, new benchmark datasets detect-waste and classify-waste are proposed that are merged collections from the above-mentioned open-source datasets with unified annotations covering all possible waste categories: bio, glass, metal and plastic, non-recyclable, other, paper, and unknown. Finally, a two-stage detector for litter localization and classification is presented. EfficientDet-D2 is used to localize litter, and EfficientNet-B2 to classify the detected waste into seven categories. The classifier is trained in a semi-supervised fashion making the use of unlabeled images. The proposed approach achieves up to 70% of average precision in waste detection and around 75% of classification accuracy on the test dataset. The code and annotations used in the studies are publicly available online.
垃圾污染是现代世界最重要的环境问题之一。出于经济和生态原因,回收利用的重要性众所周知,并且该行业对效率要求很高。由于缺乏关于所使用的指标和数据的基准以及广泛接受的标准,目前针对自动垃圾检测的研究几乎无法进行比较。本文通过对十多个现有垃圾数据集进行批判性分析以及对现有的基于深度学习的垃圾检测方法进行简要但有建设性的综述来解决这些问题。本文收集并总结了先前的研究,并提供了作者在所述数据集上的实验结果,所有这些都是为了创建一个用于垃圾检测的首个可复制基线。此外,还提出了新的基准数据集detect-waste和classify-waste,它们是上述开源数据集的合并集合,具有涵盖所有可能垃圾类别的统一注释:生物、玻璃、金属和塑料、不可回收、其他、纸张和未知。最后,提出了一种用于垃圾定位和分类的两阶段检测器。使用EfficientDet-D2来定位垃圾,使用EfficientNet-B2将检测到的垃圾分类为七类。分类器以半监督方式进行训练,利用未标记图像。所提出的方法在垃圾检测中实现了高达70%的平均精度,在测试数据集上的分类准确率约为75%。研究中使用的代码和注释可在网上公开获取。