Suppr超能文献

工业级石墨烯薄膜作为分布式温度传感器

Industrial-Grade Graphene Films as Distributed Temperature Sensors.

作者信息

Siconolfi Francesco, Cavaliere Gabriele, Sibilia Sarah, Cristiano Francesco, Giovinco Gaspare, Maffucci Antonio

机构信息

Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy.

EUT+ Institute of Nanomaterials and Nanotechnologies-EUTINN, European University of Technology, European Union, 03043 Cassino, Italy.

出版信息

Sensors (Basel). 2025 May 21;25(10):3227. doi: 10.3390/s25103227.

Abstract

This paper investigates the feasibility of a multi-purpose use of thin films of industrial-grade graphene, adopted initially to realize advanced coatings for thermal management or electromagnetic shielding. Indeed, it is demonstrated that such coatings can be conveniently used as distributed temperature sensors based on the sensitivity of their electrical resistance to temperature. The study is carried out by characterizing three nanomaterials differing in the percentage of graphene nanoplatelets in the temperature range from -40 °C to +60 °C. The paper demonstrates the presence of a reproducible and linear negative temperature coefficient behavior, with a temperature coefficient of the resistance of the order of -1.5·10-3°C-1. A linear sensor model is then developed and validated through an uncertainty-based approach, yielding a temperature prediction uncertainty of approximately ±2 °C. Finally, the robustness of the sensor concerning moderate environmental variations is verified, as the errors introduced by relative humidity values in the range from 40% to 60% are included in the model's uncertainty bounds. These results suggest the realistic possibility of adding temperature-sensing capabilities to these graphene coatings with minimal increase in complexity and cost.

摘要

本文研究了工业级石墨烯薄膜多功能应用的可行性,该薄膜最初用于实现热管理或电磁屏蔽的先进涂层。事实上,已证明基于其电阻对温度的敏感性,此类涂层可方便地用作分布式温度传感器。该研究通过表征三种在-40°C至+60°C温度范围内石墨烯纳米片百分比不同的纳米材料来进行。本文证明了存在可重复的线性负温度系数行为,电阻温度系数约为-1.5·10-3°C-1。然后通过基于不确定性的方法开发并验证了线性传感器模型,温度预测不确定性约为±2°C。最后,验证了传感器在适度环境变化下的稳健性,因为模型不确定性范围内包含了40%至60%相对湿度值引入的误差。这些结果表明,以最小的复杂性和成本增加为这些石墨烯涂层添加温度传感功能具有现实可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c746/12115416/3c5af0db0bbc/sensors-25-03227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验