Sharma Jyoti, Nath Priyanku, Ray Aranya, Dutta Pooja, Pal Kuntal, Sarkar Alok, Chandrasekhar Vadapalli, Panda Tarun K
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India.
Chemistry. 2025 May 27:e202501304. doi: 10.1002/chem.202501304.
Designing a multimetallic catalyst based on the principle of metalloenzymes has emerged as a promising route to enhance catalytic performance owing to the combined action of different metal centers in a cooperative fashion. The cooperativity of metal centers with the surrounding ligand environment in metalloenzymes plays a crucial role in driving efficient catalysis. However, the replication of such cooperativity in a synthetic system is very challenging. In this work, we report the synthesis and characterization of diverse cesium coordination polymeric networks, a 2D sheet, [Cs{κ-CHN-2(CH = N(2,6-iPrCH))}] (1), an infinite ladder chain, [Cs{κ-CHN-2(CH = N(CHPh))}] (2), and a 3D cage [Cs{κ-(CHN-2(CH = NCHCHN(CHCH)O))}] (3). This was accomplished by a variation of the substituent on the iminopyrrolyl ligand. Moreover, we studied a breakdown of the 2D sheet coordination polymer (1) into contact pair monomeric cesium complex [(18-Cr-6)Cs(κ-CHN-2(CH = N(2,6-iPrCH)))] (4). In the coordination polymers, multiple Cs centers are held together within a proximal distance (3.5-6 Å) via an iminopyrrolyl ligand. The Cs coordination polymer 2 displays the highest catalytic efficiency in ring opening polymerization of rac-lactide (ROP), giving a turnover frequency (TOF) value of 49.5 h compared to 15.7 h and 24.0 h for 1 and 3. The higher reactivity of 2 in comparison to 1 and 3 is due to the metal-metal cooperativity in cesium coordination polymeric networks.
基于金属酶原理设计多金属催化剂,由于不同金属中心以协同方式共同作用,已成为提高催化性能的一条有前景的途径。金属酶中金属中心与周围配体环境的协同作用在驱动高效催化中起着关键作用。然而,在合成体系中复制这种协同作用极具挑战性。在这项工作中,我们报告了多种铯配位聚合物网络的合成与表征,一种二维片层结构[Cs{κ-CHN-2(CH = N(2,6-iPrCH))}] (1)、一种无限阶梯链结构[Cs{κ-CHN-2(CH = N(CHPh))}] (2)以及一种三维笼状结构[Cs{κ-(CHN-2(CH = NCHCHN(CHCH)O))}] (3)。这是通过改变亚氨基吡咯基配体上的取代基实现的。此外,我们研究了二维片层配位聚合物(1)分解为接触对单体铯配合物[(18-Cr-6)Cs(κ-CHN-2(CH = N(2,6-iPrCH)))] (4)的过程。在这些配位聚合物中,多个铯中心通过亚氨基吡咯基配体在近距离(3.5 - 6 Å)内聚集在一起。铯配位聚合物2在消旋丙交酯的开环聚合反应(ROP)中表现出最高的催化效率,其周转频率(TOF)值为49.5 h⁻¹,相比之下,1和3的TOF值分别为15.7 h⁻¹和24.0 h⁻¹。与1和3相比,2具有更高的反应活性是由于铯配位聚合物网络中的金属 - 金属协同作用。