Iglesias-Mejuto Ana, Raptopoulos Grigorios, Malandain Nanthilde, Neves Amaral Mariana, Ardao Inés, Finšgar Matjaž, Laromaine Anna, Roig Anna, Pinto Reis Catarina, García-González Carlos A, Paraskevopoulou Patrina
AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de CompostelaE-15782, Spain.
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra08193, Spain.
ACS Appl Mater Interfaces. 2025 Jun 11;17(23):34444-34457. doi: 10.1021/acsami.5c08389. Epub 2025 May 28.
Cellulose and its derivatives are increasingly explored in biomedical applications due to their biocompatibility, biodegradability, and mechanical performance. In regenerative medicine, aerogel scaffolds with tunable morphology and composition are highly valued for their ability to support tissue regeneration. Three-dimensional (3D) printing offers an effective method to fabricate aerogels with hierarchical pore structures, comprising interconnected macropores and mesopores, that are crucial for tissue engineering. For clinical use, 3D printing should ensure the structural integrity of printed structures and achieve a printing resolution that allows for customization. In this work, the X-aerogel technology, implemented via polyurea cross-linking, was applied to 3D-printed cellulose structures, thereby expanding the potential applications of both technologies. Specifically, 3D-printed methylcellulose (MC) and MC doped with bacterial cellulose nanofiber (MCBCf) gels were cross-linked with an aliphatic polyurea, yielding, after supercritical drying, the corresponding (X-MC and X-MCBCf) aerogels. Elaborate characterization with ATR-FTIR, XPS, ToF-SIMS, N porosimetry, He pycnometry, and SEM confirmed the formation of polyurea on the biopolymer framework, reinforcing the structure and improving the mechanical properties without altering the morphology or textural characteristics of the materials. A significant outcome of cross-linking with polyurea is the long-term stability of X-MC and X-MCBCf aerogels in water, in contrast to their native counterparts, and their capacity to absorb water up to 1800% w/w within only 2 h. Preliminary biological evaluation of the materials, including (cell compatibility, hemolytic activity), (HET-CAM), and ( model) tests, showed good cell viability, blood compatibility, and safety for living organisms. From a fundamental materials perspective, the most important finding of this work is the disproportionally high stability of X-MC and X-MCBCf in physiological environments, achieved with only a minimal (almost undetectable) amount of cross-linking polyurea. From an application standpoint, the findings of this study, collectively, position these aerogels as sustainable and promising candidates for tissue engineering scaffolds.
由于纤维素及其衍生物具有生物相容性、生物可降解性和机械性能,它们在生物医学应用中得到了越来越多的探索。在再生医学中,具有可调形态和组成的气凝胶支架因其支持组织再生的能力而备受重视。三维(3D)打印提供了一种有效的方法来制造具有分级孔结构的气凝胶,该结构包括相互连接的大孔和中孔,这对于组织工程至关重要。对于临床应用,3D打印应确保打印结构的结构完整性,并实现允许定制的打印分辨率。在这项工作中,通过聚脲交联实现的X-气凝胶技术被应用于3D打印的纤维素结构,从而扩展了这两种技术的潜在应用。具体而言,3D打印的甲基纤维素(MC)和掺杂细菌纤维素纳米纤维的MC(MCBCf)凝胶与脂肪族聚脲交联,在超临界干燥后,得到相应的(X-MC和X-MCBCf)气凝胶。通过ATR-FTIR、XPS、ToF-SIMS、N孔隙率测定、He比重瓶法和SEM进行的详细表征证实了聚脲在生物聚合物框架上的形成,增强了结构并改善了机械性能,而不会改变材料的形态或结构特征。与聚脲交联的一个重要结果是,与天然对应物相比,X-MC和X-MCBCf气凝胶在水中具有长期稳定性,并且它们能够在仅2小时内吸收高达1800% w/w的水。对材料的初步生物学评估,包括(细胞相容性、溶血活性)、(鸡胚绒毛尿囊膜试验)和(模型)测试,显示出良好的细胞活力、血液相容性和对生物体的安全性。从基础材料的角度来看,这项工作最重要的发现是,仅用极少量(几乎不可检测)的交联聚脲就实现了X-MC和X-MCBCf在生理环境中极高的稳定性。从应用的角度来看,这项研究的结果总体上使这些气凝胶成为组织工程支架的可持续且有前景的候选材料。