Suppr超能文献

通过多组学分析和临床样本探索程序性细胞死亡模式以预测宫颈癌免疫治疗的预后和敏感性。

Exploring program-cell death patterns to predict prognosis and sensitivity of cervical cancer immunotherapy via multi-omics analysis and clinical samples.

作者信息

Pang Chunhong, Long Xianfeng, Luo Yongjin, Luo Ying

机构信息

Nanning Second People's Hospital, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China.

Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.

出版信息

Discov Oncol. 2025 May 28;16(1):940. doi: 10.1007/s12672-025-02622-z.

Abstract

BACKGROUND

Cervical cancer (CC) progression and therapeutic resistance are driven by metastatic dissemination and immune evasion. Although immunotherapy has emerged as a promising strategy, current biomarkers fail to adequately predict patient prognosis or immune checkpoint inhibitor (ICI) responsiveness. Programmed cell death (PCD) pathways are intricately linked to tumor-immune crosstalk, yet their systematic integration into predictive models remains unexplored in CC.

METHODS

We constructed a prognostic gene model for PCD by mining the Cancer Genome Atlas (TCGA), GEO, and Genecards databases. The predictive capability of the model was assessed using Kaplan-Meier (K-M) analysis and Receiver Operating Characteristic (ROC) curve analysis. A nomogram was generated through Cox regression. The model was validated in both training and testing cohorts. Real-time quantitative PCR (qRT-PCR) and immunohistochemistry were used to verify the expression of the model genes. Finally, functional analysis of low- and high-risk groups based on the median risk score was performed, including immune infiltration, genomic mutations, tumor mutational burden (TMB), and drug sensitivity.

RESULTS

We established a prognostic model based on six PCD-related genes: CD46, TFRC, PGK1, GNG5, GAPDH, and PLAU. The risk score demonstrated good performance, with area under the curve (AUC) values indicating strong predictive ability (TCGA: AUC 1-year = 0.761, AUC 3-year = 0.754, AUC 5-year = 0.803; GEO: AUC 1-year = 0.702, AUC 3-year = 0.632, AUC 5-year = 0.579). Higher risk scores were associated with poorer overall survival (OS). Additionally, low-risk patients exhibited increased immune cell infiltration, higher IPS scores, enhanced expression of PDCD1 and CTLA4, and greater sensitivity to Niraparib, Paclitaxel, and Cisplatin. qRT-PCR confirmed overexpression of CD46, TFRC, PGK1, GNG5, and PLAU in cervical cancer cell lines and tissues, with consistent findings in immunohistochemistry (IHC).

CONCLUSION

This study establishes CDI as the PCD-based immune signature for CC, enabling precise prognosis prediction and ICI candidate selection. The CDI framework provides actionable insights for combination therapies targeting PCD-immune interplay, with translational potential for personalized oncology.

摘要

背景

宫颈癌(CC)的进展和治疗耐药性是由转移扩散和免疫逃逸驱动的。尽管免疫疗法已成为一种有前景的策略,但目前的生物标志物仍无法充分预测患者的预后或免疫检查点抑制剂(ICI)的反应性。程序性细胞死亡(PCD)途径与肿瘤-免疫串扰密切相关,但其在CC预测模型中的系统整合仍未得到探索。

方法

我们通过挖掘癌症基因组图谱(TCGA)、基因表达综合数据库(GEO)和基因卡片数据库构建了一个PCD预后基因模型。使用Kaplan-Meier(K-M)分析和受试者工作特征(ROC)曲线分析评估该模型的预测能力。通过Cox回归生成列线图。该模型在训练和测试队列中均得到验证。使用实时定量聚合酶链反应(qRT-PCR)和免疫组织化学验证模型基因的表达。最后,基于中位风险评分对低风险和高风险组进行功能分析,包括免疫浸润、基因组突变、肿瘤突变负荷(TMB)和药物敏感性。

结果

我们基于六个与PCD相关的基因建立了一个预后模型:CD46、转铁蛋白受体(TFRC)、磷酸甘油酸激酶1(PGK1)、鸟嘌呤核苷酸结合蛋白G(GNG5)、甘油醛-3-磷酸脱氢酶(GAPDH)和纤溶酶原激活物尿激酶型(PLAU)。风险评分表现良好,曲线下面积(AUC)值表明具有较强的预测能力(TCGA:1年AUC = 0.761,3年AUC = 0.754,5年AUC = 0.803;GEO:1年AUC = 0.702,3年AUC = 0.632,5年AUC = 0.579)。较高的风险评分与较差的总生存期(OS)相关。此外,低风险患者表现出免疫细胞浸润增加、IPS评分更高、程序性死亡受体1(PDCD1)和细胞毒性T淋巴细胞相关蛋白4(CTLA4)表达增强,以及对尼拉帕利、紫杉醇和顺铂的敏感性更高。qRT-PCR证实了CD46、TFRC、PGK1、GNG5和PLAU在宫颈癌细胞系和组织中的过表达,免疫组织化学(IHC)结果一致。

结论

本研究将CDI确立为基于PCD的CC免疫特征,能够实现精确的预后预测和ICI候选者选择。CDI框架为针对PCD-免疫相互作用的联合治疗提供了可操作的见解,具有个性化肿瘤学的转化潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验