de Oliveira Silva Gabriel Vinicius, Ghosh Labanya, Islam Rabiul, de Araujo Clodoaldo Irineu Levartoski, Miao Guo-Xing
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
ACS Nano. 2025 Jun 10;19(22):20799-20807. doi: 10.1021/acsnano.5c03052. Epub 2025 May 28.
Spintronics traditionally relies on a large electric current to create magnetic fields or spin torques to manipulate magnetic properties, which inevitably leads to undesirable energy dissipation. Alternatively, the voltage control of magnetism (VCM) promises significantly lower energy costs. In the context of VCM, magneto-ionics distinguishes itself by leveraging voltage-driven ion transport as an energy-efficient approach to control magnetic properties, including magnetization, coercive field, and exchange bias (EB). Herein, we demonstrate that the voltage-driven ionic control of CoO antiferromagnetism allows manipulation of the magnetic properties in exchange-coupled ferromagnetic Co. In a "battery-like" device geometry, a 5 nm Co film is precisely oxidized to realize the Co/CoO heterostructure that is interfaced with a solid-state electrolyte and an anode-like Li ion source. The cathode-like CoO layer reversibly converts back and forth between Co and CoO under gate biases, even after 1000 cycles. This subsequently influences magnetic switching in the exchange-coupled Co layer, which is directly revealed by anisotropic magnetoresistance (AMR) in the Co channel. Our findings demonstrate an efficient method of all-solid-state, voltage-driven, highly reversible ionic control on magnetic channels, offering additional dimensions of control and mass integration capability for spintronic applications.
传统上,自旋电子学依赖大电流来产生磁场或自旋扭矩以操纵磁性能,这不可避免地导致了不必要的能量耗散。相比之下,磁性的电压控制(VCM)有望显著降低能源成本。在VCM的背景下,磁离子学通过利用电压驱动的离子传输作为一种控制磁性能(包括磁化强度、矫顽场和交换偏置(EB))的节能方法而脱颖而出。在此,我们证明了对CoO反铁磁性的电压驱动离子控制能够操纵交换耦合铁磁体Co中的磁性能。在一种“类电池”器件结构中,一个5纳米厚的Co膜被精确氧化,以实现与固态电解质和阳极状锂离子源相连接的Co/CoO异质结构。即使经过1000次循环后,类阴极CoO层在栅极偏压下仍能在Co和CoO之间可逆地来回转换。这随后影响了交换耦合Co层中的磁开关,这在Co通道中的各向异性磁电阻(AMR)中直接得以体现。我们的研究结果展示了一种对磁通道进行全固态、电压驱动、高度可逆离子控制的有效方法,为自旋电子学应用提供了额外的控制维度和大规模集成能力。