Ma Zheng, Arredondo-López Aitor, Wrona Jerzy, Herrero-Martín Javier, Langer Juergen, Berthold Ocker, Pellicer Eva, Menéndez Enric, Sort Jordi
Departament de Física, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain.
Singulus Technologies AG, 63796, Kahl am Main, Germany.
Adv Mater. 2025 May;37(19):e2415393. doi: 10.1002/adma.202415393. Epub 2025 Mar 20.
Voltage-driven ion motion offers a powerful means to modulate magnetism and spin phenomena in solids, a process known as magneto-ionics, which holds great promise for developing energy-efficient next-generation micro- and nano-electronic devices. Synthetic antiferromagnets (SAFs), consisting of two ferromagnetic layers coupled antiferromagnetically via a thin non-magnetic spacer, offer advantages such as enhanced thermal stability, robustness against external magnetic fields, and reduced magnetostatic interactions in magnetic tunnel junctions. Despite its technological potential, magneto-ionic control of antiferromagnetic coupling in multilayers (MLs) has only recently been explored and remains poorly understood, particularly in systems free of platinum-group metals. In this work, room-temperature voltage control of Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in Co/Ni-based SAFs is achieved. Transitions between ferrimagnetic (uncompensated) and antiferromagnetic (fully compensated) states is observed, as well as significant modulation of the RKKY bias field offset, emergence of additional switching events, and formation of skyrmion-like or pinned domain bubbles under relatively low gating voltages. These phenomena are attributed to voltage-driven oxygen migration in the MLs, as confirmed through microscopic and spectroscopic analyses. This study underscores the potential of voltage-triggered ion migration as a versatile tool for post-synthesis tuning of magnetic multilayers, with potential applications in magnetic-field sensing, energy-efficient memories and spintronics.
电压驱动的离子运动为调制固体中的磁性和自旋现象提供了一种强大的手段,这一过程被称为磁离子学,它在开发节能型下一代微纳电子器件方面具有巨大潜力。合成反铁磁体(SAF)由通过薄非磁性间隔层反铁磁耦合的两个铁磁层组成,具有诸如增强的热稳定性、对外部磁场的鲁棒性以及磁隧道结中静磁相互作用减小等优点。尽管具有技术潜力,但多层膜(ML)中反铁磁耦合的磁离子控制直到最近才被探索,并且仍然了解甚少,特别是在不含铂族金属的系统中。在这项工作中,实现了对基于Co/Ni的SAF中Ruderman-Kittel-Kasuya-Yosida(RKKY)相互作用的室温电压控制。观察到了亚铁磁(未补偿)和反铁磁(完全补偿)状态之间的转变,以及RKKY偏置场偏移的显著调制、额外开关事件的出现,并且在相对较低的门控电压下形成了类斯格明子或钉扎畴泡。通过微观和光谱分析证实,这些现象归因于ML中电压驱动的氧迁移。这项研究强调了电压触发的离子迁移作为一种用于磁多层膜合成后调谐的通用工具的潜力,在磁场传感、节能存储器和自旋电子学方面具有潜在应用。