Hosseini Hassan, Evans-Martin Sky, Jones Kevin S
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
Neurobiol Dis. 2025 Aug;212:106977. doi: 10.1016/j.nbd.2025.106977. Epub 2025 May 26.
Loss-of-function mutations in the Grin2a gene, encoding the GluN2A subunit of NMDA receptors, confer elevated schizophrenia (SCZ) risk. Although GluN2A is expressed in multiple interneuron subtypes, its role in inhibitory circuit function remains incompletely understood. Recent genetic and transcriptomic studies implicate somatostatin-positive (SST) interneurons in SCZ pathophysiology, raising the question of whether Grin2a deletion differentially affects SST and parvalbumin-positive (PV) cells.
We utilized global Grin2a knockout (KO) and heterozygous (HET) mice to investigate how GluN2A deficiency affects inhibitory dynamics in the prelimbic (PrL) medial prefrontal cortex (mPFC). Immunohistochemistry quantified interneuron density, while slice electrophysiology and optogenetics assessed inhibitory postsynaptic current (IPSC) amplitude and kinetics, quantal GABA release, and PV- and SST-driven gamma-band oscillations (GBOs).
Grin2a KO and HET mice exhibited increased PV and SST interneuron density and a shift in excitatory-inhibitory (E/I) balance favoring inhibition. PV interneurons displayed functional impairments characterized by prolonged IPSC decay, elevated asynchronous GABA release, and enhanced PV-driven gamma-band oscillations (GBOs), consistent with impaired presynaptic calcium handling. In contrast, SST interneurons exhibited increased IPSC amplitudes without alterations in short-term plasticity or oscillatory drive, suggesting modulation of inhibitory tone without affecting network synchrony.
GluN2A loss appears to disrupt inhibitory networks through distinct cell-type-specific mechanisms-presynaptic dysfunction in PV cells and postsynaptic enhancement from SST cells. PV dysfunction aligns with gamma synchrony impairments linked to SCZ cognitive flexibility, while SST alterations may contribute to impaired feedback inhibition and sensory deficits. These findings clarify GluN2A's role in interneuron subtype function and network stability in SCZ.
编码N-甲基-D-天冬氨酸受体(NMDA)GluN2A亚基的Grin2a基因功能缺失突变会增加精神分裂症(SCZ)风险。尽管GluN2A在多种中间神经元亚型中表达,但其在抑制性回路功能中的作用仍未完全明确。最近的遗传学和转录组学研究表明,生长抑素阳性(SST)中间神经元与SCZ病理生理学有关,这就提出了一个问题,即Grin2a基因缺失是否会对SST和小白蛋白阳性(PV)细胞产生不同影响。
我们利用全局Grin2a基因敲除(KO)和杂合(HET)小鼠,研究GluN2A缺乏如何影响前额叶内侧(PrL)内侧前额叶皮质(mPFC)的抑制动力学。免疫组织化学法对中间神经元密度进行定量,而脑片电生理学和光遗传学则评估抑制性突触后电流(IPSC)的幅度和动力学、GABA量子释放以及PV和SST驱动的γ波段振荡(GBO)。
Grin2a基因敲除和杂合小鼠的PV和SST中间神经元密度增加,兴奋-抑制(E/I)平衡向有利于抑制的方向转变。PV中间神经元表现出功能障碍,其特征为IPSC衰减延长、异步GABA释放增加以及PV驱动的γ波段振荡(GBO)增强,这与突触前钙处理受损一致。相比之下,SST中间神经元的IPSC幅度增加,短期可塑性或振荡驱动无变化,这表明抑制性张力得到调节,但不影响网络同步性。
GluN2A缺失似乎通过不同的细胞类型特异性机制破坏抑制性网络——PV细胞的突触前功能障碍和SST细胞的突触后增强。PV功能障碍与SCZ认知灵活性相关的γ同步性损伤一致,而SST改变可能导致反馈抑制受损和感觉缺陷。这些发现阐明了GluN2A在SCZ中间神经元亚型功能和网络稳定性中的作用。