Suppr超能文献

扩展六方氮化硼中自旋缺陷的相干性可实现先进的量子比特控制和量子传感。

Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing.

作者信息

Rizzato Roberto, Schalk Martin, Mohr Stephan, Hermann Jens C, Leibold Joachim P, Bruckmaier Fleming, Salvitti Giovanna, Qian Chenjiang, Ji Peirui, Astakhov Georgy V, Kentsch Ulrich, Helm Manfred, Stier Andreas V, Finley Jonathan J, Bucher Dominik B

机构信息

Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, Garching bei München, 85748, Germany.

University of Bari, Department of Physics "M. Merlin", Via Amendola 173, Bari, 70125, Italy.

出版信息

Nat Commun. 2023 Aug 22;14(1):5089. doi: 10.1038/s41467-023-40473-w.

Abstract

Negatively-charged boron vacancy centers ([Formula: see text]) in hexagonal Boron Nitride (hBN) are attracting increasing interest since they represent optically-addressable qubits in a van der Waals material. In particular, these spin defects have shown promise as sensors for temperature, pressure, and static magnetic fields. However, their short spin coherence time limits their scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by two orders of magnitude, approaching the fundamental T relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect radiofrequency signals with sub-Hz resolution. The corresponding sensitivity is benchmarked against that of state-of-the-art NV-diamond quantum sensors. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.

摘要

六方氮化硼(hBN)中带负电荷的硼空位中心([公式:见正文])正吸引着越来越多的关注,因为它们代表了范德华材料中可光学寻址的量子比特。特别是,这些自旋缺陷已显示出有望成为温度、压力和静磁场的传感器。然而,它们较短的自旋相干时间限制了其在量子技术中的应用范围。在这里,我们应用动态解耦技术来抑制磁噪声,并将自旋相干时间延长两个数量级,接近基本的T弛豫极限。基于这一改进,我们展示了先进的自旋控制和一组量子传感协议,以检测具有亚赫兹分辨率的射频信号。相应的灵敏度与最先进的NV金刚石量子传感器进行了基准比较。这项工作为使用可剥离材料中的自旋缺陷进行纳米级传感奠定了基础,并为集成到超薄结构中的量子传感器和量子网络开辟了一条有前途的道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ffb/10444786/9fa30a7a7680/41467_2023_40473_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验