Huang Mengqi, Zhou Jingcheng, Chen Di, Lu Hanyi, McLaughlin Nathan J, Li Senlei, Alghamdi Mohammed, Djugba Dziga, Shi Jing, Wang Hailong, Du Chunhui Rita
Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
Department of Physics, University of Houston, Houston, TX, 77204, USA.
Nat Commun. 2022 Sep 13;13(1):5369. doi: 10.1038/s41467-022-33016-2.
Emergent color centers with accessible spins hosted by van der Waals materials have attracted substantial interest in recent years due to their significant potential for implementing transformative quantum sensing technologies. Hexagonal boron nitride (hBN) is naturally relevant in this context due to its remarkable ease of integration into devices consisting of low-dimensional materials. Taking advantage of boron vacancy spin defects in hBN, we report nanoscale quantum imaging of low-dimensional ferromagnetism sustained in FeGeTe/hBN van der Waals heterostructures. Exploiting spin relaxometry methods, we have further observed spatially varying magnetic fluctuations in the exfoliated FeGeTe flake, whose magnitude reaches a peak value around the Curie temperature. Our results demonstrate the capability of spin defects in hBN of investigating local magnetic properties of layered materials in an accessible and precise way, which can be extended readily to a broad range of miniaturized van der Waals heterostructure systems.
近年来,由范德华材料承载的具有可及自旋的新兴色心因其在实现变革性量子传感技术方面的巨大潜力而备受关注。六方氮化硼(hBN)在这方面具有天然的相关性,因为它非常易于集成到由低维材料组成的器件中。利用hBN中的硼空位自旋缺陷,我们报道了在FeGeTe/hBN范德华异质结构中维持的低维铁磁性的纳米级量子成像。通过利用自旋弛豫测量方法,我们进一步观察到在剥离的FeGeTe薄片中空间变化的磁涨落,其幅度在居里温度附近达到峰值。我们的结果证明了hBN中的自旋缺陷能够以一种可及且精确的方式研究层状材料的局部磁特性,这可以很容易地扩展到广泛的小型化范德华异质结构系统。