Jha Debesh, Susladkar Onkar Kishor, Gorade Vandan, Keles Elif, Antalek Matthew, Seyithanoglu Deniz, Cebeci Timurhan, Aktas Halil Ertugrul, Kartal Gulbiz Dagoglu, Kaymakoglu Sabahattin, Erturk Sukru Mehmet, Velichko Yuri, Ladner Daniela P, Borhani Amir A, Medetalibeyoglu Alpay, Durak Gorkem, Bagci Ulas
Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, IL, 60611, USA.
Istanbul University, School of Medicine (Capa), Istanbul, Turkey.
Sci Data. 2025 May 28;12(1):896. doi: 10.1038/s41597-025-05201-7.
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.
肝硬化是慢性肝病的终末期,其特征是广泛纤维化和结节性再生,这显著增加了死亡风险。虽然磁共振成像(MRI)提供了一种非侵入性评估方法,但由于形态改变和信号特征的异质性,准确分割肝硬化肝脏面临重大挑战。深度学习方法有望实现这些任务的自动化,但由于缺乏大规模的带注释数据集,进展有限。在此,我们展示了CirrMRI600+,这是首个综合数据集,包含628例高分辨率腹部MRI扫描(310个T1加权序列和318个T2加权序列,总计近40,000个带注释切片),并带有经专家验证的肝硬化肝脏分割标签。该数据集包括人口统计学信息、临床参数以及可用的组织病理学验证。此外,我们提供了11项最先进的深度学习实验的基准结果,以建立性能标准。CirrMRI600+能够开发和验证用于肝硬化肝脏分析的先进计算方法,有可能加速实现肝硬化自动视觉分期和个性化治疗规划的进程。