Suppr超能文献

高间隙透明导体

Hyper-gap transparent conductor.

作者信息

Wu Zhengran, Li Chunhong, Hu Xiaolei, Chen Kun, Guo Xiang, Li Yan, Lu Ling

机构信息

Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing, China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Mater. 2025 May 28. doi: 10.1038/s41563-025-02248-0.

Abstract

An elusive conductor with perfect optical transparency holds revolutionary potential for fields such as optoelectronics and nanophotonics. Such a hypothetical metal would possess a spectral gap-a 'hyper-gap'-in its absorption spectrum, separating the intraband and interband absorptions, in which optical losses could vanish. Currently, this property is achievable only within the bandgap of insulators. However, realizing such a hyper-gap metal demands an exotic electronic structure in which the conducting bands have a bandwidth narrower than their energy separations from the remaining electronic states. Here we present such a hyper-gap in a family of organic metals-the Fabre charge-transfer salts-through first-principles predictions coupled with both electrical and optical measurements. A transparent window, spanning from red to near-infrared wavelengths, is identified in bulk single crystals that remain transmissive over a thickness of 30 µm. The corresponding absorption coefficient is the lowest among known stoichiometric metals, rivalling thin films of transparent conductive oxides. This finding introduces a path, beyond traditional doping strategies in insulators, to combine electronic conduction and optical transparency.

摘要

一种具有完美光学透明度的难以捉摸的导体,在光电子学和纳米光子学等领域具有革命性的潜力。这种假设的金属在其吸收光谱中会拥有一个光谱间隙——一个“超间隙”,将带内吸收和带间吸收分开,在这种情况下光损耗可能会消失。目前,这种特性仅在绝缘体的带隙内才能实现。然而,要实现这种超间隙金属需要一种奇特的电子结构,其中导带的带宽比它们与其余电子态的能量间隔更窄。在这里,我们通过第一性原理预测以及电学和光学测量,在一类有机金属——法布里电荷转移盐中呈现出这样一种超间隙。在厚度为30微米时仍保持透射率的块状单晶中,发现了一个从红色到近红外波长的透明窗口。相应的吸收系数是已知化学计量比金属中最低的,可与透明导电氧化物薄膜相媲美。这一发现引入了一条超越绝缘体传统掺杂策略的途径,将电子传导和光学透明度结合起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验