Suppr超能文献

糖码重编码大肠杆菌:基于同源重组的天然多糖生物合成基因簇的基因组编辑。

Glyco-recoded Escherichia coli: Recombineering-based genome editing of native polysaccharide biosynthesis gene clusters.

机构信息

Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Metab Eng. 2019 May;53:59-68. doi: 10.1016/j.ymben.2019.02.002. Epub 2019 Feb 14.

Abstract

Recombineering-based redesign of bacterial genomes by adding, removing or editing large segments of genomic DNA is emerging as a powerful technique for expanding the range of functions that an organism can perform. Here, we describe a glyco-recoding strategy whereby major non-essential polysaccharide gene clusters in K-12 Escherichia coli are replaced with orthogonal glycosylation components for both biosynthesis of heterologous glycan structures and site-specific glycan conjugation to target proteins. Specifically, the native enterobacterial common antigen (ECA) and O-polysaccharide (O-PS) antigen loci were systematically replaced with ∼9-10 kbp of synthetic DNA encoding Campylobacter jejuni enzymes required for asparagine-linked (N-linked) protein glycosylation. Compared to E. coli cells carrying the same glycosylation machinery on extrachromosomal plasmids, glyco-recoded strains attached glycans to acceptor protein targets with equal or greater efficiency while exhibiting markedly better growth phenotypes and higher glycoprotein titers. Overall, our results define a convenient and reliable framework for bacterial glycome editing that provides a more stable route for chemical diversification of proteins in vivo and effectively expands the bacterial glycoengineering toolkit.

摘要

通过添加、删除或编辑基因组 DNA 的大片段,基于同源重组的细菌基因组重新设计正在成为扩展生物体功能范围的一种强大技术。在这里,我们描述了一种糖基重新编码策略,通过该策略,K-12 大肠杆菌中的主要非必需多糖基因簇被正交糖基化成分所取代,用于异源聚糖结构的生物合成和靶蛋白的定点糖基化缀合。具体而言,天然肠杆菌共同抗原 (ECA) 和 O-多糖 (O-PS) 抗原基因座被系统地替换为编码用于天冬酰胺连接 (N-连接) 蛋白糖基化的 Campylobacter jejuni 酶所需的约 9-10 kbp 的合成 DNA。与携带染色体外质粒上相同糖基化机制的大肠杆菌细胞相比,糖基化重新编码的菌株以相等或更高的效率将聚糖附着到受体蛋白靶标上,同时表现出明显更好的生长表型和更高的糖蛋白滴度。总的来说,我们的结果定义了一个方便可靠的细菌糖组编辑框架,为体内蛋白质的化学多样化提供了更稳定的途径,并有效地扩展了细菌糖工程工具包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验