Li Fanrong, Jin Congnan, Pan Yacheng, Zhang Zheng, Wang Liying, Deng Jieqiong, Zhou Yifeng, Guo Binbin, Zhang Shenghua
Department of Genetics, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
Jiangsu Clinical Medicine Research Institute, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Front Immunol. 2025 May 14;16:1544348. doi: 10.3389/fimmu.2025.1544348. eCollection 2025.
Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited therapeutic targets and poor immunotherapy outcomes. The tumor microenvironment (TME) plays a key role in cancer progression. Advances in single-cell transcriptomics have highlighted the impact of stromal cells on tumor progression, immune suppression, and immunotherapy. This study aims to identify stromal cell marker genes and develop a prognostic signature for predicting TNBC survival outcomes and immunotherapy response.
Single-cell RNA sequencing (scRNA-seq) datasets were retrieved from the Gene Expression Omnibus (GEO) database and annotated using known marker genes. Cell types preferentially distributed in TNBC were identified using odds ratios (OR). Bulk transcriptome data were analyzed using Weighted correlation network analysis (WGCNA) to identify myCAF-, VSMC-, and Pericyte-related genes (MVPRGs). A consensus MVP cell-related signature (MVPRS) was developed using 10 machine learning algorithms and 101 model combinations and validated in training and validation cohorts. Immune infiltration and immunotherapy response were assessed using CIBERSORT, ssGSEA, TIDE, IPS scores, and an independent cohort (GSE91061). FN1, a key gene in the model, was validated through qRT-PCR, immunohistochemistry, RNA interference, CCK-8 assay, apoptosis assay and wound-healing assay.
In TNBC, three stromal cell subpopulations-myofibroblastic cancer-associated fibroblasts (myCAF), vascular smooth muscle cells (VSMCs), and pericytes-were enriched, exhibiting high interaction frequencies and strong associations with poor prognosis. A nine-gene prognostic model (MVPRS), developed from 23 prognostically significant genes among the 259 MVPRGs, demonstrated excellent predictive performance and was validated as an independent prognostic factor. A nomogram integrating MVPRS, age, stage, and tumor grade offered clinical utility. High-risk group showed reduced immune infiltration and increased activity in tumor-related pathways like ANGIOGENESIS and HYPOXIA, while low-risk groups responded better to immunotherapy based on TIDE and IPS scores. FN1, identified as a key oncogene, was highly expressed in TNBC tissues and cell lines, promoting proliferation and migration while inhibiting apoptosis.
This study reveals TNBC microenvironment heterogeneity and introduces a prognostic signature based on myCAF, VSMC, and Pericyte marker genes. MVPRS effectively predicts TNBC prognosis and immunotherapy response, providing guidance for personalized treatment. FN1 was validated as a key oncogene impacting TNBC progression and malignant phenotype, with potential as a therapeutic target.
三阴性乳腺癌(TNBC)是一种侵袭性很强的亚型,治疗靶点有限,免疫治疗效果不佳。肿瘤微环境(TME)在癌症进展中起关键作用。单细胞转录组学的进展突出了基质细胞对肿瘤进展、免疫抑制和免疫治疗的影响。本研究旨在鉴定基质细胞标记基因,并开发一种预后特征,用于预测TNBC的生存结果和免疫治疗反应。
从基因表达综合数据库(GEO)中检索单细胞RNA测序(scRNA-seq)数据集,并用已知标记基因进行注释。使用优势比(OR)确定优先分布于TNBC中的细胞类型。使用加权相关网络分析(WGCNA)分析批量转录组数据,以鉴定与肌成纤维细胞相关的癌症相关成纤维细胞(myCAF)、血管平滑肌细胞(VSMC)和周细胞相关的基因(MVPRG)。使用10种机器学习算法和101种模型组合开发了一种共识MVP细胞相关特征(MVPRS),并在训练和验证队列中进行验证。使用CIBERSORT、单样本基因集富集分析(ssGSEA)、肿瘤免疫功能障碍和排斥分析(TIDE)、免疫预测评分(IPS)以及一个独立队列(GSE91061)评估免疫浸润和免疫治疗反应。通过定量逆转录聚合酶链反应(qRT-PCR)、免疫组织化学、RNA干扰、细胞计数试剂盒-8(CCK-8)测定、凋亡测定和伤口愈合测定对模型中的关键基因纤连蛋白1(FN1)进行验证。
在TNBC中,三种基质细胞亚群——肌成纤维细胞样癌症相关成纤维细胞(myCAF)、血管平滑肌细胞(VSMC)和周细胞——富集,表现出高相互作用频率且与不良预后密切相关。从259个MVPRG中的23个具有预后意义的基因中开发出的九基因预后模型(MVPRS)显示出优异的预测性能,并被验证为独立的预后因素。整合MVPRS、年龄、分期和肿瘤分级的列线图具有临床实用性。高危组显示免疫浸润减少,血管生成和低氧等肿瘤相关通路的活性增加,而根据TIDE和IPS评分,低危组对免疫治疗反应更好。被鉴定为关键癌基因的FN1在TNBC组织和细胞系中高表达,促进增殖和迁移,同时抑制凋亡。
本研究揭示了TNBC微环境的异质性,并引入了基于myCAF、VSMC和周细胞标记基因的预后特征。MVPRS有效地预测了TNBC的预后和免疫治疗反应,为个性化治疗提供了指导。FN1被验证为影响TNBC进展和恶性表型的关键癌基因,具有作为治疗靶点的潜力。