Suppr超能文献

大规模流行病学建模:探寻巴西蚊媒疾病的时空模式

Large-scale epidemiological modelling: scanning for mosquito-borne diseases spatio-temporal patterns in Brazil.

作者信息

Araujo Eduardo C, Codeço Cláudia T, Loch Sandro, Vacaro Luã B, Freitas Laís Picinini, Lana Raquel M, Bastos Leonardo S, de Almeida Iasmim F, Valente Fernanda, Carvalho Luiz Max, Coelho Flávio C

机构信息

School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, Brazil.

Programa de Computação Científica, FIOCRUZ, Rio de Janeiro, Brazil.

出版信息

R Soc Open Sci. 2025 May 28;12(5):241261. doi: 10.1098/rsos.241261. eCollection 2025 May.

Abstract

The influence of climate on mosquito-borne diseases like dengue and chikungunya is well established, but comprehensively tracking long-term spatial and temporal trends across large areas has been hindered by fragmented data and limited analysis tools. This study presents an unprecedented analysis, in terms of breadth, estimating the susceptible-infectious-recovered transmission parameters from incidence data in all 5570 municipalities in Brazil over 14 years (2010-2023) for both dengue and chikungunya. We describe the Episcanner computational pipeline, developed to estimate these parameters, producing a reusable dataset characterizing all dengue and chikungunya epidemics that have taken place in this period in Brazil. The analysis reveals new insights into the climate-epidemic nexus: we identify distinct geographical and temporal patterns of arbovirus disease incidence across Brazil, highlighting how climatic factors like temperature and precipitation influence the timing and intensity of dengue and chikungunya epidemics. The innovative Episcanner tool empowers researchers and public health officials to explore these patterns in detail, facilitating targeted interventions and risk assessments. This research offers the possibility of exploring the main characteristics of dengue and chikungunya epidemics and their geographical specificities linked to the effects of global temperature fluctuations such as those captured by the El Niño-Southern Oscillation index.

摘要

气候对登革热和基孔肯雅热等蚊媒疾病的影响已得到充分证实,但由于数据分散和分析工具有限,全面追踪大面积地区的长期时空趋势受到了阻碍。本研究进行了一项前所未有的广度分析,根据巴西5570个城市14年(2010 - 2023年)期间登革热和基孔肯雅热的发病数据,估算易感 - 感染 - 康复传播参数。我们描述了为估算这些参数而开发的Episcanner计算流程,生成了一个可重复使用的数据集,该数据集刻画了这一时期巴西发生的所有登革热和基孔肯雅热疫情。分析揭示了气候与疫情关系的新见解:我们确定了巴西各地虫媒病毒疾病发病率的不同地理和时间模式,突出了温度和降水等气候因素如何影响登革热和基孔肯雅热疫情的时间和强度。创新的Episcanner工具使研究人员和公共卫生官员能够详细探索这些模式,促进有针对性的干预措施和风险评估。这项研究提供了探索登革热和基孔肯雅热疫情主要特征及其与全球温度波动影响相关的地理特异性的可能性,例如厄尔尼诺 - 南方涛动指数所反映的那些影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2449/12115816/2278cf884f76/rsos.241261.f001.jpg

相似文献

1
Large-scale epidemiological modelling: scanning for mosquito-borne diseases spatio-temporal patterns in Brazil.
R Soc Open Sci. 2025 May 28;12(5):241261. doi: 10.1098/rsos.241261. eCollection 2025 May.
5
The spread of mosquito-borne viruses in modern times: A spatio-temporal analysis of dengue and chikungunya.
Spat Spatiotemporal Epidemiol. 2018 Aug;26:113-125. doi: 10.1016/j.sste.2018.06.002. Epub 2018 Jun 18.
6
Climate teleconnections and recent patterns of human and animal disease outbreaks.
PLoS Negl Trop Dis. 2012 Jan;6(1):e1465. doi: 10.1371/journal.pntd.0001465. Epub 2012 Jan 24.
7
Impacts of El Niño Southern Oscillation on the dengue transmission dynamics in the Metropolitan Region of Recife, Brazil.
Rev Soc Bras Med Trop. 2022 Jun 6;55:e0671. doi: 10.1590/0037-8682-0671-2021. eCollection 2022.
8
ENSO-driven climate variability promotes periodic major outbreaks of dengue in Venezuela.
Sci Rep. 2018 Apr 10;8(1):5727. doi: 10.1038/s41598-018-24003-z.
9
Dengue epidemic typology and risk factors for extensive epidemic in Amazonas state, Brazil, 2010-2011.
BMC Public Health. 2018 Mar 15;18(1):356. doi: 10.1186/s12889-018-5251-x.
10
Spatio-temporal dynamics of dengue in Brazil: Seasonal travelling waves and determinants of regional synchrony.
PLoS Negl Trop Dis. 2019 Apr 22;13(4):e0007012. doi: 10.1371/journal.pntd.0007012. eCollection 2019 Apr.

引用本文的文献

1
Climate change and the global food chain: a catalyst for emerging infectious diseases?
Int J Emerg Med. 2025 Aug 11;18(1):149. doi: 10.1186/s12245-025-00901-8.

本文引用的文献

1
The expansion of chikungunya in Brazil.
Lancet Reg Health Am. 2023 Aug 11;25:100571. doi: 10.1016/j.lana.2023.100571. eCollection 2023 Sep.
3
Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: an epidemiological study.
Lancet Microbe. 2023 May;4(5):e319-e329. doi: 10.1016/S2666-5247(23)00033-2. Epub 2023 Apr 6.
4
Fast expansion of dengue in Brazil.
Lancet Reg Health Am. 2022 May 29;12:100274. doi: 10.1016/j.lana.2022.100274. eCollection 2022 Aug.
5
How heterogeneous is the dengue transmission profile in Brazil? A study in six Brazilian states.
PLoS Negl Trop Dis. 2022 Sep 12;16(9):e0010746. doi: 10.1371/journal.pntd.0010746. eCollection 2022 Sep.
6
Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models.
Sci Adv. 2022 Jan 21;8(3):eabg5234. doi: 10.1126/sciadv.abg5234. Epub 2022 Jan 19.
7
Global burden for dengue and the evolving pattern in the past 30 years.
J Travel Med. 2021 Dec 29;28(8). doi: 10.1093/jtm/taab146.
8
The global emergence of Chikungunya infection: An integrated view.
Rev Med Virol. 2022 May;32(3):e2287. doi: 10.1002/rmv.2287. Epub 2021 Aug 24.
9
10
[Seasonality of dengue reporting in state capitals in the Brazilian Amazon and impacts of El Niño/La Niña].
Cad Saude Publica. 2019 Sep 16;35(9):e00123417. doi: 10.1590/0102-311X00123417.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验