Suppr超能文献

行为分类:引入机器学习方法进行符号追踪、目标追踪及其他方面的分类。

Behavior classification: Introducing machine learning approaches for classification of sign-tracking, goal-tracking and beyond.

作者信息

Godin Camille, Huppé-Gourgues Frédéric

机构信息

École de Psychologie, Université de Moncton, Moncton, New-Brunswick, Canada.

出版信息

PLoS One. 2025 May 29;20(5):e0323893. doi: 10.1371/journal.pone.0323893. eCollection 2025.

Abstract

Classifying behaviors in research often relies on predetermined or subjective cutoff values, which can introduce inconsistencies and reduce objectivity. For example, in Pavlovian conditioning studies, rodents display diverse behaviors which can be quantified using the Pavlovian Conditioning Approach (PavCA) Index score. This score is used to categorize subjects as sign-trackers (ST), goal-trackers (GT), or intermediate (IN) groups, but the cutoff values used to distinguish these categories are often arbitrary and inconsistent. The inconsistencies stem from variability in the skewness and kurtosis of score distributions across laboratories, influenced by a range of biological and environmental factors. To address this issue, we explored two approaches to PavCA Index score classification: the k-Means classification and the derivative method. These methods determine cutoff values based on the distribution of PavCA Index scores in the sample, allowing for broader applicability to various types of behavioral data. Our results suggest that these methods, particularly the derivative method based on mean scores from the final days of conditioning, are effective tools for identifying sign-trackers and goal-trackers, especially in relatively small samples. In contrast to existing methods, our approaches provide a standardized classification framework that reflects unique distributions. Furthermore, these methods are adaptable to a researcher's specific needs, accommodating different models and sample sizes. To facilitate implementation, we provide MATLAB code for classifying subjects using both the k-Means classifier and the derivative method.

摘要

在研究中对行为进行分类通常依赖于预先设定的或主观的临界值,这可能会引入不一致性并降低客观性。例如,在巴甫洛夫条件反射研究中,啮齿动物表现出多种行为,这些行为可以使用巴甫洛夫条件反射方法(PavCA)指数得分进行量化。该得分用于将受试者分类为信号追踪者(ST)、目标追踪者(GT)或中间(IN)组,但用于区分这些类别的临界值往往是任意的且不一致。这些不一致性源于不同实验室得分分布的偏度和峰度的变异性,受到一系列生物和环境因素的影响。为了解决这个问题,我们探索了两种对PavCA指数得分进行分类的方法:k均值分类法和导数法。这些方法根据样本中PavCA指数得分的分布来确定临界值,从而更广泛地适用于各种类型的行为数据。我们的结果表明,这些方法,特别是基于条件反射最后几天平均得分的导数法,是识别信号追踪者和目标追踪者的有效工具,尤其是在相对较小的样本中。与现有方法相比,我们的方法提供了一个反映独特分布的标准化分类框架。此外,这些方法能够适应研究人员的特定需求,适用于不同的模型和样本量。为便于实施,我们提供了使用k均值分类器和导数法对受试者进行分类的MATLAB代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8be8/12121781/b4f0a9b3d458/pone.0323893.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验