Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, Essen, Germany.
Molecular Biology, ZMB, University of Duisburg-Essen, Essen, Germany.
Nat Nanotechnol. 2024 Oct;19(10):1521-1531. doi: 10.1038/s41565-024-01738-7. Epub 2024 Jul 29.
Within the cell, chemical reactions are often confined and organized through a modular architecture. This facilitates the targeted localization of molecular species and their efficient translocation to subsequent sites. Here we present a cell-free nanoscale model that exploits compartmentalization strategies to carry out regulated protein unfolding and degradation. Our synthetic model comprises two connected DNA origami nanocompartments (each measuring 25 nm × 41 nm × 53 nm): one containing the protein unfolding machine, p97, and the other housing the protease chymotrypsin. We achieve the unidirectional immobilization of p97 within the first compartment, establishing a gateway mechanism that controls substrate recruitment, translocation and processing within the second compartment. Our data show that, whereas spatial confinement increases the rate of the individual reactions by up to tenfold, the physical connection of the compartmentalized enzymes into a chimera efficiently couples the two reactions and reduces off-target proteolysis by almost sixfold. Hence, our modular approach may serve as a blueprint for engineering artificial nanofactories with reshaped catalytic performance and functionalities beyond those observed in natural systems.
在细胞内,化学反应通常通过模块化结构进行限制和组织。这有助于分子物种的靶向定位及其向后续位点的有效转运。在这里,我们提出了一种无细胞的纳米级模型,该模型利用分隔化策略来进行受控的蛋白质展开和降解。我们的合成模型由两个连接的 DNA 折纸纳米隔室(每个隔室的尺寸为 25nm×41nm×53nm)组成:一个隔室包含蛋白质展开机器 p97,另一个隔室容纳蛋白酶糜蛋白酶。我们实现了 p97 在第一个隔室中的单向固定化,建立了一种门控机制,该机制控制着第二个隔室内的底物募集、转运和加工。我们的数据表明,虽然空间限制使单个反应的速率提高了多达十倍,但将分隔化酶物理连接成嵌合体可以有效地将两个反应耦合起来,并将非靶标蛋白水解减少近六倍。因此,我们的模块化方法可以作为工程人工纳米工厂的蓝图,这些纳米工厂具有重塑的催化性能和功能,超出了在自然系统中观察到的性能和功能。