Hu Xin, Li Ning, Ren Mingyang, Ji Yifan, Guo Hongmei, Chen Qian, Sui Xiubao
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
School of Computer and Electronic Information, Nanjing Normal University, Nanjing, 210023, China.
Adv Sci (Weinh). 2025 Aug;12(32):e06499. doi: 10.1002/advs.202506499. Epub 2025 May 30.
Conventional detectors usually operate in one detection mode, namely photovoltaic mode, photoconductive mode, or photomultiplication mode, etc., which may have limitations such as insufficient sensitivity and limited dynamic range for applications. In this study, a photovoltaic/photomultiplication dual-mode organic photodetector is developed by integrating two different organic bulk heterojunctions (BHJs), one introduces the photovoltaic effect, and the other triggers photomultiplication charge generation in the stacked device at different voltage polarities. The combination of the two operation modes largely extends the dynamic range of detectors, even superior to that of a commercial silicon detector. The ultra-low noise level of the photovoltaic mode enables it to detect faint light with exceptional sensitivity, while the photomultiplication mode can handle a significantly large saturation photocurrent, allowing for the precise detection of high-intensity signals. A dynamic range of 225 dB is achieved by precisely controlling the operation conditions of the dual-mode detector, which surpasses the dynamic range of 140 dB of a commercial silicon detector. The detector can, as a result, precisely detect light signals (800 nm) in the range of 10-10 W cm. This study demonstrates the versatility of organic semiconductors in designing multi-functional and high-performing photodetectors for practical applications.
传统探测器通常以一种探测模式工作,即光伏模式、光电导模式或光电倍增模式等,这些模式在应用中可能存在灵敏度不足和动态范围有限等局限性。在本研究中,通过集成两种不同的有机本体异质结(BHJ)开发了一种光伏/光电倍增双模有机光电探测器,其中一种引入光伏效应,另一种在堆叠器件中在不同电压极性下触发光电倍增电荷产生。两种工作模式的结合大大扩展了探测器的动态范围,甚至优于商用硅探测器。光伏模式的超低噪声水平使其能够以极高的灵敏度检测微弱光,而光电倍增模式可以处理显著大的饱和光电流,从而能够精确检测高强度信号。通过精确控制双模探测器的工作条件,实现了225 dB的动态范围,超过了商用硅探测器140 dB的动态范围。因此,该探测器能够精确检测10^-10 W/cm范围内的光信号(800 nm)。本研究证明了有机半导体在设计用于实际应用的多功能和高性能光电探测器方面的多功能性。