Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
Organic Electronics Research Center and Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
Sci Adv. 2023 Apr 28;9(17):eadd7526. doi: 10.1126/sciadv.add7526. Epub 2023 Apr 26.
Crystalline photodiodes remain the most viable infrared sensing technology of choice, yet the opacity and the limitation in pixel size reduction per se restrict their development for supporting high-resolution in situ infrared images. In this work, we propose an all-organic non-fullerene-based upconversion device that brings invisible infrared signal into human vision via exciplex cohost light-emissive system. The device reaches an infrared-to-visible upconversion efficiency of 12.56% by resolving the 940-nm infrared signal (power density of 103.8 μW cm). We tailor a semitransparent (AVT, ~60%), large-area (10.35 cm), lightweight (22.91 g), single-pixel upconversion panel to visualize the infrared power density down to 0.75 μW cm, inferring a bias-switching linear dynamic range approaching 80 dB. We also demonstrate the possibility of visualizing low-intensity infrared signals from the Face ID and LiDAR, which should fill the gap in the existing technology based on pixelated complementary metal-oxide semiconductors with optical lenses.
晶态光电二极管仍然是最可行的红外传感技术选择,但由于其本身的不透明性和像素尺寸减小的限制,限制了它们在支持高分辨率原位红外图像方面的发展。在这项工作中,我们提出了一种基于全有机非富勒烯的上转换器件,通过激基复合物共主体发光系统将不可见的红外信号引入人眼视觉。该器件通过解析 940nm 的红外信号(功率密度为 103.8 μW cm),达到了 12.56%的红外到可见光的上转换效率。我们定制了一个半透明(AVT,~60%)、大面积(10.35cm)、轻量级(22.91g)、单像素上转换面板,以将红外功率密度下转换至 0.75 μW cm,推断出接近 80dB 的偏置切换线性动态范围。我们还演示了从 Face ID 和 LiDAR 中可视化低强度红外信号的可能性,这应该填补了基于带有光学透镜的像素化互补金属氧化物半导体的现有技术的空白。