Suppr超能文献

基于光谱特征选择和机器学习方法的棉花黄萎病光谱检测

Spectroscopic detection of cotton Verticillium wilt by spectral feature selection and machine learning methods.

作者信息

Li Weinan, Liu Lisen, Li Jianing, Yang Weiguang, Guo Yang, Huang Longyu, Yang Zhaoen, Peng Jun, Jin Xiuliang, Lan Yubin

机构信息

College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou, Guangdong, China.

National Center for International Collaboration on Precision Agricultural Aviation Pesticide Spraying Technology, South China Agricultural University, Guangzhou, Guangdong, China.

出版信息

Front Plant Sci. 2025 May 15;16:1519001. doi: 10.3389/fpls.2025.1519001. eCollection 2025.

Abstract

INTRODUCTION

Verticillium wilt is a severe soil-borne disease that affects cotton growth and yield. Traditional monitoring methods, which rely on manual investigation, are inefficient and impractical for large-scale applications. This study introduces a novel approach combining machine learning with feature selection to identify sensitive spectral features for accurate and efficient detection of cotton Verticillium wilt.

METHODS

We conducted comprehensive hyperspectral measurements using handheld devices (350-2500 nm) to analyze cotton leaves in a controlled greenhouse environment and employed Unmanned Aerial Vehicle (UAV) hyperspectral imaging (400-995 nm) to capture canopy-level data in field conditions. The hyperspectral data were pre-processed to extract wavelet coefficients and spectral indices (SIs), enabling the derivation of disease-specific spectral features (DSSFs) through advanced feature selection techniques. Using these DSSFs, we developed detection models to assess both the incidence and severity of leaf damage by Verticillium wilt at the leaf scale and the incidence at the canopy scale. Initial analysis identified critical spectral reflectance bands, wavelet coefficients, and SIs that exhibited dynamic responses as the disease progressed.

RESULTS

Model validation demonstrated that the incidence detection models at the leaf scale achieved a peak classification accuracy of 85.83%, which is about 10% higher than traditional methods without feature selection. The severity detection models showed improved precision as disease severity of damage increased, with accuracy ranging from 46.82% to 93.10%. At the canopy scale, UAV-based hyperspectral data achieved a remarkable classification accuracy of 93.0% for disease incidence detection.

DISCUSSION

This study highlights the significant impact of feature selection on enhancing the performance of hyperspectral-based remote sensing models for cotton wilt monitoring. It also explores the transferability of sensitive spectral features across different scales, laying the groundwork for future large-scale early warning systems and monitoring cotton Verticillium wilt.

摘要

引言

黄萎病是一种严重的土传病害,会影响棉花的生长和产量。传统的监测方法依赖人工调查,效率低下,不适用于大规模应用。本研究引入了一种将机器学习与特征选择相结合的新方法,以识别敏感光谱特征,从而准确、高效地检测棉花黄萎病。

方法

我们使用手持设备(350 - 2500纳米)在可控的温室环境中对棉花叶片进行了全面的高光谱测量,并采用无人机高光谱成像(400 - 995纳米)在田间条件下获取冠层水平的数据。对高光谱数据进行预处理,以提取小波系数和光谱指数(SIs),通过先进的特征选择技术得出病害特异性光谱特征(DSSFs)。利用这些DSSFs,我们开发了检测模型,以评估黄萎病在叶片尺度上对叶片损伤的发病率和严重程度,以及在冠层尺度上的发病率。初步分析确定了随着病害发展呈现动态响应的关键光谱反射带、小波系数和SIs。

结果

模型验证表明,叶片尺度上的发病率检测模型的峰值分类准确率达到85.83%,比未进行特征选择的传统方法高出约10%。严重程度检测模型随着损伤病害严重程度的增加,精度有所提高,准确率在46.82%至93.10%之间。在冠层尺度上,基于无人机的高光谱数据在病害发病率检测方面达到了93.0%的显著分类准确率。

讨论

本研究突出了特征选择对提高基于高光谱的遥感模型监测棉花枯萎病性能的重大影响。它还探讨了敏感光谱特征在不同尺度间的可转移性,为未来大规模早期预警系统和监测棉花黄萎病奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验