Suppr超能文献

通过使用重新设计的BAR方法进行高效采样来增强结合亲和力预测:对GPCR靶点的测试

Enhancing binding affinity predictions through efficient sampling with a re-engineered BAR method: a test on GPCR targets.

作者信息

Kim Minkyu, Jeong Jian, Kim Donghwan, Lee Sangbae, Cho Art E

机构信息

inCerebro 8F Nokmyoung Bldg, 8 Teheran-ro 10-gil, Gangnam-gu Seoul Korea 06234

Atomatrix 851, Daewangpangyo-ro 815, Sujeong-gu Seongnam-si Gyeonggi-do Korea

出版信息

Chem Sci. 2025 May 21. doi: 10.1039/d5sc01030f.

Abstract

Computational approaches for predicting the binding affinity of ligand-receptor complex structures often fail to validate experimental results satisfactorily due to insufficient sampling. To address these challenges, recent emphasis has been placed on the re-sampling of new trajectories. In this study, we propose a simulation protocol that achieves efficient sampling by re-engineering the widely used Bennett acceptance ratio (BAR) method as a representative approach. We tested its efficacy across various membrane protein targets, including G-protein coupled receptors (GPCRs) with diverse structural landscapes and experimentally validated binding affinities, to verify its efficient applicability. Subsequently, using BAR-based binding free energy calculations, we confirmed correlations with experimental data, demonstrating the validity and performance of this computational approach.

摘要

由于采样不足,用于预测配体-受体复合物结构结合亲和力的计算方法往往无法令人满意地验证实验结果。为应对这些挑战,最近人们将重点放在了新轨迹的重新采样上。在本研究中,我们提出了一种模拟方案,通过对广泛使用的贝内特接受率(BAR)方法进行重新设计,作为一种代表性方法来实现高效采样。我们在各种膜蛋白靶点上测试了其有效性,包括具有不同结构特征和经实验验证的结合亲和力的G蛋白偶联受体(GPCR),以验证其有效适用性。随后,通过基于BAR的结合自由能计算,我们证实了与实验数据的相关性,证明了这种计算方法的有效性和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d6b/12190047/b6386c8dba22/d5sc01030f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验