CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China.
School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C583-C594. doi: 10.1152/ajpcell.00464.2021. Epub 2022 Jul 11.
G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors, are the largest family of cell surface receptors in eukaryotes. There are ∼800 GPCRs in human, regulating diverse physiological processes. The GPCRs are the most intensively studied drug targets. Drugs that target GPCRs account for about a quarter of the global market share of therapeutic drugs. Therefore, to develop physiologically relevant and robust assays to search new GPCR ligands or modulators remain the major focus of drug discovery research worldwide. Early functional GPCR assays mainly depend on the measurement of G-protein-mediated second messenger generation. Recent developments in GPCR biology indicate that the signaling of these receptors is much more complex than the oversimplified classical view. The GPCRs have been found to activate multiple G proteins simultaneously and induce β-arrestin-mediated signaling. They have also been found to interact with other cytosolic scaffolding proteins and form dimer or heteromer with GPCRs or other transmembrane proteins. Here, we mainly discuss technologies focused on detecting protein-protein interactions, such as fluorescence resonance energy transfer/bioluminescence resonance energy transfer (FRET/BRET), NanoLuc binary technology (NanoBiT), Tango, etc., and their applications in measuring GPCRs interacting with various signaling partners. In the final part, we also discuss the species differences in GPCRs when using animal models to study the in vivo functions of GPCR ligands, and possible ways to solve this problem with modern genetic tools.
G 蛋白偶联受体(GPCRs),也被称为七次跨膜受体,是真核生物中细胞表面受体最大的家族。人类中有约 800 种 GPCR,调节着多种生理过程。GPCR 是研究最深入的药物靶点之一。靶向 GPCR 的药物约占全球治疗药物市场份额的四分之一。因此,开发与生理相关且稳健的检测方法以寻找新的 GPCR 配体或调节剂仍然是全球药物发现研究的主要重点。早期的功能性 GPCR 检测主要依赖于 G 蛋白介导的第二信使生成的测量。最近的 GPCR 生物学研究进展表明,这些受体的信号转导比简化的经典观点要复杂得多。已经发现 GPCR 可以同时激活多种 G 蛋白,并诱导β-arrestin 介导的信号转导。还发现它们可以与其他胞质骨架蛋白相互作用,并与 GPCR 或其他跨膜蛋白形成二聚体或异二聚体。在这里,我们主要讨论集中于检测蛋白-蛋白相互作用的技术,如荧光共振能量转移/生物发光共振能量转移(FRET/BRET)、NanoLuc 二元技术(NanoBiT)、Tango 等,及其在测量 GPCR 与各种信号伴侣相互作用中的应用。在最后一部分,我们还讨论了在使用动物模型研究 GPCR 配体体内功能时 GPCR 存在的种间差异,以及利用现代遗传工具解决该问题的可能方法。