Escudero Andrea, Hicke Francisco J, Lucena-Sánchez Elena, Pradana-López Sandra, Esteve-Moreno Juan José, Sanz-Álvarez Víctor, Garrido-Cano Iris, Torres-Ruiz Sandra, Cejalvo Juan Miguel, García-Fernández Alba, Díez Paula, Martínez-Máñez Ramón
Instituto Interuniversitario de Investigación de Reconocimiento Molecular yDesarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera, s/n., 46022 València, Spain.
Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación, Príncipe Felipe. Eduardo Primo Yúfera 3, 46012 València, Spain.
ACS Nano. 2025 Jun 10;19(22):20932-20955. doi: 10.1021/acsnano.5c03799. Epub 2025 May 30.
Bioinspired nano/micromotors with drug delivery capabilities are emerging tools with the promising potential to treat numerous diseases. However, some major challenges must be overcome before reaching real biomedical applications. Above all, it is necessary to design engines that employ biocompatible and bioavailable fuels to induce efficient propulsion in biological environments. In addition, ideal nanomotors should also be capable of delivering the cargo on-command using selected stimuli. To tackle these challenges, we herein present the design and evaluation (both and ) of a glucose-driven gated Janus nanomotor that performs on-demand anticancer drug delivery to treat solid tumors. The motor's nanoarchitectonics is based on the anisotropic conjunction of catalytic platinum nanodendrites (PtNds) and a mesoporous silica nanoparticle (acting as a nanocontainer for anticancer drug doxorubicin) capped with enzyme glucose oxidase (GOx). Autonomous nanomotor movement is achieved thanks to two catalytic components, GOx and PtNds, in a hybrid cascade reaction: GOx transforms glucose to give HO that is subsequently catalyzed by PtNds into HO and O. Besides, gatekeeper moieties (GOx) respond to the presence of intracellular proteases, which induces doxorubicin delivery. Biological experiments with the nanomotor are carried out in cancer cell cultures, three-dimensional (3D) tumor models (spheroids), and in patient-derived organoids (PDOs). A strong anticancer effect is found and attributed to the synergistic combination glucose-induced propulsion, controlled drug delivery, elimination of glucose (by GOx), ROS production (HO generation by GOx) and hypoxia reduction (O generated by PtNds). Taken together, this study advances the engineering of endogenously fueled nanomotors for operation and provides insights into the application of active particles in cancer therapy toward clinical application.
具有药物递送能力的仿生纳米/微型马达是新兴工具,在治疗多种疾病方面具有广阔的潜力。然而,在实现真正的生物医学应用之前,必须克服一些重大挑战。首先,有必要设计出能使用生物相容性和生物可利用燃料的引擎,以便在生物环境中实现高效推进。此外,理想的纳米马达还应能够利用选定的刺激按需递送货物。为应对这些挑战,我们在此展示了一种葡萄糖驱动的门控Janus纳米马达的设计与评估(包括体外和体内),该纳米马达可进行按需抗癌药物递送以治疗实体瘤。该马达的纳米结构基于催化铂纳米枝晶(PtNds)与介孔二氧化硅纳米颗粒(作为抗癌药物阿霉素的纳米容器)的各向异性结合,介孔二氧化硅纳米颗粒由葡萄糖氧化酶(GOx)封端。由于GOx和PtNds这两种催化成分在混合级联反应中发挥作用,实现了纳米马达的自主运动:GOx将葡萄糖转化为H₂O₂,随后PtNds将H₂O₂催化为H₂O和O₂。此外,守门部分(GOx)对细胞内蛋白酶的存在做出反应,从而诱导阿霉素的递送。使用该纳米马达进行的生物学实验在癌细胞培养物、三维(3D)肿瘤模型(球体)以及患者来源的类器官(PDO)中进行。发现了很强的抗癌效果,这归因于葡萄糖诱导的推进、可控的药物递送、葡萄糖的消除(通过GOx)、活性氧的产生(GOx产生H₂O₂)和缺氧减少(PtNds产生O₂)的协同组合。综上所述,本研究推动了内源性燃料纳米马达用于体内操作的工程化,并为活性颗粒在癌症治疗中的临床应用提供了见解。