Žiemytė Miglė, Escudero Andrea, Díez Paula, Ferrer María D, Murguía Jose R, Martí-Centelles Vicente, Mira Alex, Martínez-Máñez Ramón
Genomics & Health Department, FISABIO Foundation, 46020 València, Spain.
Instituto Interuniversitario de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, València 46022, Spain.
Chem Mater. 2023 May 9;35(11):4412-4426. doi: 10.1021/acs.chemmater.3c00587. eCollection 2023 Jun 13.
Development of bioinspired nanomotors showing effective propulsion and cargo delivery capabilities has attracted much attention in the last few years due to their potential use in biomedical applications. However, implementation of this technology in realistic settings is still a barely explored field. Herein, we report the design and application of a multifunctional gated Janus platinum-mesoporous silica nanomotor constituted of a propelling element (platinum nanodendrites) and a drug-loaded nanocontainer (mesoporous silica nanoparticle) capped with ficin enzyme modified with β-cyclodextrins (β-CD). The engineered nanomotor is designed to effectively disrupt bacterial biofilms via HO-induced self-propelled motion, ficin hydrolysis of the extracellular polymeric matrix (EPS) of the biofilm, and controlled pH-triggered cargo (vancomycin) delivery. The effective synergic antimicrobial activity of the nanomotor is demonstrated in the elimination of biofilms. The nanomotor achieves 82% of EPS biomass disruption and a 96% reduction in cell viability, which contrasts with a remarkably lower reduction in biofilm elimination when the components of the nanomotors are used separately at the same concentrations. Such a large reduction in biofilm biomass in has never been achieved previously by any conventional therapy. The strategy proposed suggests that engineered nanomotors have great potential for the elimination of biofilms.
近年来,具有有效推进和货物递送能力的仿生纳米马达的开发因其在生物医学应用中的潜在用途而备受关注。然而,在实际环境中实施这项技术仍然是一个几乎未被探索的领域。在此,我们报告了一种多功能门控Janus铂-介孔二氧化硅纳米马达的设计与应用,该纳米马达由推进元件(铂纳米枝晶)和载药纳米容器(介孔二氧化硅纳米颗粒)组成,载药纳米容器上覆盖有经β-环糊精(β-CD)修饰的无花果蛋白酶。这种工程化纳米马达旨在通过HO诱导的自推进运动、生物膜细胞外聚合物基质(EPS)的无花果蛋白酶水解以及pH值触发的可控货物(万古霉素)递送,有效地破坏细菌生物膜。纳米马达在消除生物膜方面展现出有效的协同抗菌活性。纳米马达实现了82%的EPS生物量破坏和96%的细胞活力降低,相比之下,当纳米马达的各组分以相同浓度单独使用时,生物膜消除率显著更低。此前任何传统疗法都从未实现过如此大幅度的生物膜生物量降低。所提出的策略表明,工程化纳米马达在消除生物膜方面具有巨大潜力。