Liu Mingxu, Martin-Gomez Alejandro, Oni Julius K, Mears Simon C, Armand Mehran
Biomechanical- and Image-Guided Surgical Systems (BIGSS), Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
Comput Methods Biomech Biomed Eng Imaging Vis. 2023;11(4):1234-1242. doi: 10.1080/21681163.2022.2157329. Epub 2022 Dec 18.
Osteonecrosis of the Femoral Head (ONFH) is a progressive disease characterized by the death of bone cells due to the loss of blood supply. Early detection and treatment of this disease are vital in avoiding Total Hip Replacement. Early stages of ONFH can be diagnosed using Magnetic Resonance Imaging (MRI), commonly used intra-operative imaging modalities such as fluoroscopy frequently fail to depict the lesion. Therefore, increasing the difficulty of intra-operative localization of osteonecrosis. This work introduces a novel framework that enables the localization of necrotic lesions in Computed Tomography (CT) as a step toward localizing and visualizing necrotic lesions in intra-operative images. The proposed framework uses Deep Learning algorithms to enable automatic segmentation of femur, pelvis, and necrotic lesions in MRI. An additional step performs semi-automatic segmentation of these anatomies, excluding the necrotic lesions, in CT. A final step performs pairwise registration of the corresponding anatomies, allowing for the localization and visualization of the necrosis in CT. To investigate the feasibility of integrating the proposed framework in the surgical workflow, we conducted experiments on MRIs and CTs containing early-stage ONFH. Our results indicate that the proposed framework is able to segment the anatomical structures of interest and accurately register the femurs and pelvis of the corresponding volumes, allowing for the visualization and localization of the ONFH in CT and generated X-rays, which could enable intra-operative visualization of the necrotic lesions for surgical procedures such as core decompression of the femur.
股骨头坏死(ONFH)是一种进行性疾病,其特征是由于血液供应丧失导致骨细胞死亡。早期发现和治疗这种疾病对于避免全髋关节置换至关重要。ONFH的早期阶段可以通过磁共振成像(MRI)进行诊断,而常用的术中成像方式如荧光透视法常常无法显示病变。因此,增加了术中股骨头坏死定位的难度。这项工作引入了一个新颖的框架,该框架能够在计算机断层扫描(CT)中定位坏死病变,作为在术中图像中定位和可视化坏死病变的第一步。所提出的框架使用深度学习算法对MRI中的股骨、骨盆和坏死病变进行自动分割。另一个步骤是在CT中对这些解剖结构进行半自动分割,但不包括坏死病变。最后一步是对相应的解剖结构进行成对配准,从而在CT中实现坏死区域的定位和可视化。为了研究将所提出的框架整合到手术流程中的可行性,我们对包含早期ONFH的MRI和CT进行了实验。我们的结果表明,所提出的框架能够分割感兴趣的解剖结构,并准确配准相应体积的股骨和骨盆,从而在CT和生成的X射线中实现ONFH的可视化和定位,这可以在诸如股骨核心减压等手术过程中实现坏死病变的术中可视化。