Fedele G, Reder A, Mercogliano P
CMCC Foundation - Euro-Mediterranean Center on Climate Change, Caserta, Italy.
Sci Data. 2025 May 30;12(1):910. doi: 10.1038/s41597-025-05270-8.
This study presents SD-EQM_GCMs_IT, a new high-resolution climate projection ensemble dataset over Italy, designed to support climate impact assessments and adaptation strategies. It is derived by statistically downscaling nine CMIP6 General Circulation Models (GCMs) using the Copernicus European Regional ReAnalysis (CERRA) as a training dataset. The Empirical Quantile Mapping (EQM) method ensures a realistic statistical distribution and enhances local climate characterization. The dataset provides daily values at 0.05° resolution from 1985 to 2100 for six Essential Climate Variables (ECVs), including temperature, humidity, wind speed, and precipitation. Two climate scenarios are considered: SSP1-2.6 and SSP3-7.0, for low and high challanges to mitigation and adaptation respectively. This dataset enhances the current climate information available for Italy by bridging the gap between existing CMIP6 global projections and the absence of an ensemble of regional climate models for the same scenarios. By offering high-resolution data, it equips policymakers, industries, and communities with refined climate insights to enhance resilience and adaptation efforts.
本研究展示了SD-EQM_GCMs_IT,这是一个覆盖意大利的全新高分辨率气候预测集合数据集,旨在支持气候影响评估和适应策略。它是通过使用哥白尼欧洲区域再分析(CERRA)作为训练数据集,对九个CMIP6通用环流模型(GCMs)进行统计降尺度推导得出的。经验分位数映射(EQM)方法确保了现实的统计分布,并增强了当地气候特征描述。该数据集提供了1985年至2100年期间六个基本气候变量(ECVs)的每日值,分辨率为0.05°,包括温度、湿度、风速和降水。考虑了两种气候情景:SSP1-2.6和SSP3-7.0,分别对应低和高的缓解和适应挑战。该数据集通过弥合现有CMIP6全球预测与缺乏相同情景下区域气候模型集合之间的差距,增强了意大利现有的气候信息。通过提供高分辨率数据,它为政策制定者、行业和社区提供了精确的气候见解,以加强复原力和适应努力。