Suppr超能文献

贝叶斯深度学习结构照明显微镜实现了具有不确定性量化的可靠超分辨率成像。

Bayesian deep-learning structured illumination microscopy enables reliable super-resolution imaging with uncertainty quantification.

作者信息

Liu Tao, Liu Jiahao, Li Dong, Tan Shan

机构信息

Key Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China.

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

出版信息

Nat Commun. 2025 May 30;16(1):5027. doi: 10.1038/s41467-025-60093-w.

Abstract

The objective of optical super-resolution imaging is to acquire reliable sub-diffraction information on bioprocesses to facilitate scientific discovery. Structured illumination microscopy (SIM) is acknowledged as the optimal modality for live-cell super-resolution imaging. Although recent deep learning techniques have substantially advanced SIM, their transparency and reliability remain uncertain and under-explored, often resulting in unreliable results and biological misinterpretation. Here, we develop Bayesian deep learning (BayesDL) for SIM, which enhances the reconstruction of densely labeled structures while enabling the quantification of super-resolution uncertainty. With the uncertainty, BayesDL-SIM achieves high-fidelity distribution-informed SIM imaging, allowing for the communication of credibility estimates to users regarding the model outcomes. We also demonstrate that BayesDL-SIM boosts SIM reliability by identifying and preventing erroneous generalizations in various model misuse scenarios. Moreover, the BayesDL uncertainty shows versatile utilities for daily super-resolution imaging, such as error estimation, data acquisition evaluation, etc. Furthermore, we demonstrate the effectiveness and superiority of BayesDL-SIM in live-cell imaging, which reliably reveals F-actin dynamics and the reorganization of the cell cytoskeleton. This work lays the foundation for the reliable implementation of deep learning-based SIM methods in practical applications.

摘要

光学超分辨率成像的目标是获取有关生物过程的可靠亚衍射信息,以促进科学发现。结构光照明显微镜(SIM)被公认为活细胞超分辨率成像的最佳模式。尽管最近的深度学习技术极大地推动了SIM的发展,但其透明度和可靠性仍不确定且未得到充分探索,常常导致不可靠的结果和生物学误解。在此,我们开发了用于SIM的贝叶斯深度学习(BayesDL),它增强了密集标记结构的重建,同时能够对超分辨率不确定性进行量化。借助这种不确定性,BayesDL-SIM实现了高保真分布告知的SIM成像,能够向用户传达关于模型结果的可信度估计。我们还证明,BayesDL-SIM通过识别和防止各种模型滥用场景中的错误泛化来提高SIM的可靠性。此外,BayesDL不确定性在日常超分辨率成像中具有多种用途,如误差估计、数据采集评估等。此外,我们展示了BayesDL-SIM在活细胞成像中的有效性和优越性,它可靠地揭示了F-肌动蛋白动力学和细胞骨架的重组。这项工作为基于深度学习的SIM方法在实际应用中的可靠实施奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc0f/12125172/5a16e3581f1e/41467_2025_60093_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验