Suppr超能文献

机器学习辅助的干涉结构光照明显微镜用于动态生物成像。

Machine learning assisted interferometric structured illumination microscopy for dynamic biological imaging.

机构信息

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.

Department of Physics, Oxford University, Oxford, UK.

出版信息

Nat Commun. 2022 Dec 21;13(1):7836. doi: 10.1038/s41467-022-35307-0.

Abstract

Structured Illumination Microscopy, SIM, is one of the most powerful optical imaging methods available to visualize biological environments at subcellular resolution. Its limitations stem from a difficulty of imaging in multiple color channels at once, which reduces imaging speed. Furthermore, there is substantial experimental complexity in setting up SIM systems, preventing a widespread adoption. Here, we present Machine-learning Assisted, Interferometric Structured Illumination Microscopy, MAI-SIM, as an easy-to-implement method for live cell super-resolution imaging at high speed and in multiple colors. The instrument is based on an interferometer design in which illumination patterns are generated, rotated, and stepped in phase through movement of a single galvanometric mirror element. The design is robust, flexible, and works for all wavelengths. We complement the unique properties of the microscope with an open source machine-learning toolbox that permits real-time reconstructions to be performed, providing instant visualization of super-resolved images from live biological samples.

摘要

结构光照明显微镜,SIM,是一种最强大的光学成像方法,可用于在亚细胞分辨率下可视化生物环境。其局限性源于同时在多个颜色通道中成像的困难,这降低了成像速度。此外,SIM 系统的设置存在实质性的实验复杂性,阻碍了其广泛应用。在这里,我们提出了基于机器学习的干涉结构照明显微镜,MAI-SIM,作为一种易于实现的方法,可用于高速、多色的活细胞超分辨率成像。该仪器基于干涉仪设计,通过单个振镜元件的运动来生成、旋转和逐步改变照明模式的相位。该设计坚固、灵活,适用于所有波长。我们用一个开源的机器学习工具箱来补充显微镜的独特性质,该工具箱允许进行实时重建,从而可以即时可视化来自活生物样本的超分辨率图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e666/9772218/ae8dd8638ad1/41467_2022_35307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验