Genentech, South San Francisco, CA, USA.
Methods Mol Biol. 2023;2603:245-257. doi: 10.1007/978-1-0716-2863-8_20.
Proteins are integral to biological systems and functions. Identifying and quantifying proteins can therefore offer systems-wide insights into protein-protein interactions, cellular signaling, and biological pathway activity. The use of quantitative proteomics has become a method of choice for identifying and quantifying proteins in complex matrices. Proteomics allows researchers to survey hundreds to thousands of proteins in a less biased manner than classical antibody-based protein capture strategies. Typically, discovery approaches have used data-dependent acquisition (DDA) methods, but this approach suffers from stochasticity that compromises quantitation. Recent developments in data-independent acquisition (DIA) proteomics workflows enable proteomic profiling of thousands of samples with increased peak picking consistency making it an excellent candidate for discovering and assessing biomarkers in clinical samples. However, quantitation of peptides from DIA datasets is computationally intensive, and guidelines on how to establish DIA methods are lacking. Method development and optimization require novel tools to visualize and filter DIA datasets appropriately. Here, a protocol and novel script workflow for the optimization of quantitative DIA methods using stable isotope labeling of amino acids in culture (SILAC) are presented. This protocol includes steps for cell growth and labeling, peptide digestion and preparation, and optimization of quantitative DIA methods. In addition, important steps for (1) computational analysis to identify and quantify peptides, (2) data visualizations to identify the linear abundance ranges for all peptides in the sample, and (3) descriptions of how to find high confidence quantitation abundance thresholds are described herein.
蛋白质是生物系统和功能的重要组成部分。因此,鉴定和定量蛋白质可以提供蛋白质-蛋白质相互作用、细胞信号转导和生物途径活性的系统范围的见解。定量蛋白质组学的使用已成为鉴定和定量复杂基质中蛋白质的首选方法。蛋白质组学使研究人员能够以比基于经典抗体的蛋白质捕获策略更少偏见的方式调查数百到数千种蛋白质。通常,发现方法使用依赖数据的获取(DDA)方法,但这种方法受到随机性的影响,从而损害定量。最近在数据非依赖性获取(DIA)蛋白质组学工作流程方面的进展使数千个样本的蛋白质组学分析成为可能,并且提高了峰提取一致性,使其成为在临床样本中发现和评估生物标志物的理想候选方法。然而,DIA 数据集的肽定量计算密集,并且缺乏关于如何建立 DIA 方法的指南。方法开发和优化需要新的工具来适当地可视化和过滤 DIA 数据集。在这里,提出了一种使用稳定同位素标记的氨基酸在培养物中(SILAC)优化定量 DIA 方法的协议和新脚本工作流程。该协议包括细胞生长和标记、肽消化和制备以及定量 DIA 方法优化的步骤。此外,还描述了用于(1)计算分析以鉴定和定量肽,(2)数据可视化以确定样品中所有肽的线性丰度范围,以及(3)描述如何找到高置信度定量丰度阈值的重要步骤。